Python library for converting [Scikit-Learn] (http://scikit-learn.org/) models to PMML.
This library is a thin wrapper around the [JPMML-SkLearn] (https://github.com/jpmml/jpmml-sklearn) command-line application. For a list of supported Scikit-Learn Estimator and Transformer types, please refer to the documentation of the JPMML-SkLearn project.
- Python 2.7, 3.4 or newer.
- Java 1.7 or newer. The Java executable must be available on system path.
Installing the latest version from GitHub:
pip install --user git+https://github.com/jpmml/sklearn2pmml.git
A typical workflow can be summarized as follows:
- Create a
sklearn2pmml.PMMLPipeline
object, and populate it with pipeline steps as usual. Classsklearn2pmml.PMMLPipeline
extends classsklearn.pipeline.Pipeline
with the following functionality:
- If the
Pipeline.fit(X, y)
method is invoked withpandas.DataFrame
orpandas.Series
object as anX
argument, then its column names are used as feature names. Otherwise, feature names default to "x1", "x2", .., "x{number_of_features}". - If the
Pipeline.fit(X, y)
method is invoked withpandas.Series
object as any
argument, then its name is used as the target name (for supervised models). Otherwise, the target name defaults to "y".
- Fit and validate the pipeline as usual.
- Convert the fitted
sklearn2pmml.PMMLPipeline
object to PMML document by invoking utility methodsklearn2pmml.sklearn2pmml(pipeline, pmml_destination_path)
.
Developing a simple decision tree model for the classification of iris species:
import pandas
iris_df = pandas.read_csv("Iris.csv")
from sklearn2pmml import PMMLPipeline
from sklearn.tree import DecisionTreeClassifier
iris_pipeline = PMMLPipeline([
("classifier", DecisionTreeClassifier())
])
iris_pipeline.fit(iris_df[iris_df.columns.difference(["Species"])], iris_df["Species"])
from sklearn2pmml import sklearn2pmml
sklearn2pmml(iris_pipeline, "DecisionTreeIris.pmml", with_repr = True)
Developing a more elaborate logistic regression model for the same:
import pandas
iris_df = pandas.read_csv("Iris.csv")
from sklearn2pmml import PMMLPipeline
from sklearn2pmml.decoration import ContinuousDomain
from sklearn_pandas import DataFrameMapper
from sklearn.decomposition import PCA
from sklearn.feature_selection import SelectKBest
from sklearn.preprocessing import Imputer
from sklearn.linear_model import LogisticRegression
iris_pipeline = PMMLPipeline([
("mapper", DataFrameMapper([
(["Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"], [ContinuousDomain(), Imputer()])
])),
("pca", PCA(n_components = 3)),
("selector", SelectKBest(k = 2)),
("classifier", LogisticRegression())
])
iris_pipeline.fit(iris_df, iris_df["Species"])
from sklearn2pmml import sklearn2pmml
sklearn2pmml(iris_pipeline, "LogisticRegressionIris.pmml", with_repr = True)
Uninstalling:
pip uninstall sklearn2pmml
SkLearn2PMML is licensed under the [GNU Affero General Public License (AGPL) version 3.0] (http://www.gnu.org/licenses/agpl-3.0.html). Other licenses are available on request.
Please contact [info@openscoring.io] (mailto:info@openscoring.io)