Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GOES example #1

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 108 additions & 0 deletions catalog_files/goes_kerchunk.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
aliases: {}
data:
0e0c2948d0bc5691:
datatype: intake.readers.datatypes:Parquet
kwargs:
storage_options: null
url: s3://esip/rsignell/testing/combined.parq
metadata: {}
user_parameters: {}
entries:
goes_kerchunk:
kwargs:
args:
- '{data(0e0c2948d0bc5691)}'
backend_kwargs:
storage_options:
lazy: true
remote_options:
anon: true
remote_protocol: s3
target_options:
anon: true
client_kwargs:
endpoint_url: https://ncsa.osn.xsede.org
chunks: {}
engine: kerchunk
metadata:
creation_code: |
import intake
import xarray as xr
combined_parquet = 's3://esip/rsignell/testing/combined.parq'
ds = xr.open_dataset(combined_parquet,
engine='kerchunk', chunks={},
backend_kwargs=dict(storage_options=dict(remote_protocol='s3', lazy=True,
target_options=dict(anon=True, client_kwargs={'endpoint_url': 'https://ncsa.osn.xsede.org'}),
remote_options=dict(anon=True))))
reader = intake.reader_from_call(_i9, join_lines=True)
repr: |
<xarray.Dataset>
Dimensions: (t: 24, y: 5424,
x: 5424,
SST_day_night_emissive_bands: 4,
SST_night_only_emissive_band: 1,
number_of_SZA_bounds: 2,
number_of_LZA_bounds: 2,
number_of_time_bounds: 2,
number_of_image_bounds: 2)
Coordinates: (12/14)
SST_day_night_emissive_band_ids (t, SST_day_night_emissive_bands) float32 dask.array<chunksize=(1, 4), meta=np.ndarray>
SST_day_night_emissive_wavelengths (t, SST_day_night_emissive_bands) float32 dask.array<chunksize=(1, 4), meta=np.ndarray>
SST_night_only_emissive_band_id (t, SST_night_only_emissive_band) int8 dask.array<chunksize=(1, 1), meta=np.ndarray>
SST_night_only_emissive_wavelength (t, SST_night_only_emissive_band) float32 dask.array<chunksize=(1, 1), meta=np.ndarray>
day_solar_zenith_angle (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
night_solar_zenith_angle (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
... ...
retrieval_solar_zenith_angle (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
* t (t) datetime64[ns] ...
* x (x) float64 -0.15...
x_image (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
* y (y) float64 0.151...
y_image (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
Dimensions without coordinates: SST_day_night_emissive_bands,
SST_night_only_emissive_band,
number_of_SZA_bounds, number_of_LZA_bounds,
number_of_time_bounds, number_of_image_bounds
Data variables: (12/42)
DQF (t, y, x) float32 dask.array<chunksize=(1, 226, 226), meta=np.ndarray>
SST (t, y, x) float32 dask.array<chunksize=(1, 226, 226), meta=np.ndarray>
algorithm_dynamic_input_data_container (t) float64 dask.array<chunksize=(1,), meta=np.ndarray>
algorithm_product_version_container (t) float64 dask.array<chunksize=(1,), meta=np.ndarray>
day_solar_zenith_angle_bounds (t, number_of_SZA_bounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>
geospatial_lat_lon_extent (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
... ...
total_number_of_severely_degraded_quality_ocean_pixels (t) float64 dask.array<chunksize=(1,), meta=np.ndarray>
total_number_of_unprocessed_pixels (t) float64 dask.array<chunksize=(1,), meta=np.ndarray>
twilight_solar_zenith_angle (t) float32 dask.array<chunksize=(1,), meta=np.ndarray>
twilight_solar_zenith_angle_bounds (t, number_of_SZA_bounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>
x_image_bounds (t, number_of_image_bounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>
y_image_bounds (t, number_of_image_bounds) float32 dask.array<chunksize=(1, 2), meta=np.ndarray>
Attributes: (12/33)
Conventions: CF-1.7
Metadata_Conventions: Unidata Dataset Discovery v1.0
cdm_data_type: Image
cell_methods: quantitative_local_zenith_angle: sum retrieval...
dataset_name: OR_ABI-L2-SSTF-M6_G16_s20202100000205_e2020210...
date_created: 2020-07-28T01:05:45.6Z
... ...
summary: The ABI Sea Surface Temperature (SST) is calcu...
time_coverage_end: 2020-07-28T00:59:51.3Z
time_coverage_start: 2020-07-28T00:00:20.5Z
timeline_id: ABI Mode 6
title: ABI L2 Sea Surface (Skin) Temperature
units: K

output_instance: xarray:Dataset
reader: intake.readers.readers:XArrayDatasetReader
user_parameters: {}
metadata:
description: |
Kerchunk'd parquet reference set to a small piece GOES 16 data. Equivalent to the
Kerchunk tutorial flow by Lucas Sterzinger (see links)
references:
- https://gist.github.com/rsignell/84f727f25d923aab5aa7c534cef14151
- https://medium.com/pangeo/fake-it-until-you-make-it-reading-goes-netcdf4-data-on-aws-s3-as-zarr-for-rapid-data-access-61e33f8fe685
license: BSD-3

user_parameters: {}
version: 2
1 change: 1 addition & 0 deletions catalog_files/manifest.text
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
# names of the YAML files to read from this same directory
goes_kerchunk.yaml
tutorial.yaml