-
Notifications
You must be signed in to change notification settings - Fork 1.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add basic support and optimization for qwen2-vl
- Loading branch information
1 parent
f7fb3c8
commit 4e8ef3e
Showing
2 changed files
with
196 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
182 changes: 182 additions & 0 deletions
182
python/llm/src/ipex_llm/transformers/models/qwen2_vl.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,182 @@ | ||
# | ||
# Copyright 2016 The BigDL Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# Some parts of this file is adapted from | ||
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/qwen2_vl/modeling_qwen2_vl.py | ||
# which is licensed under Apache License 2.0: | ||
# | ||
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved. | ||
# | ||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX | ||
# and OPT implementations in this library. It has been modified from its | ||
# original forms to accommodate minor architectural differences compared | ||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import math | ||
from typing import Optional, Tuple, Union, List | ||
|
||
import torch | ||
|
||
from ipex_llm.transformers.models.common import merge_qkv_base | ||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache | ||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal | ||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache | ||
|
||
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VLAttention, Qwen2VLModel | ||
from transformers.models.qwen2_vl.modeling_qwen2_vl import apply_multimodal_rotary_pos_emb | ||
from transformers.models.qwen2_vl.modeling_qwen2_vl import repeat_kv | ||
from transformers.modeling_outputs import BaseModelOutputWithPast | ||
from transformers.cache_utils import Cache | ||
|
||
|
||
def merge_qkv(module: torch.nn.Module): | ||
merge_qkv_base(module, Qwen2VLAttention) | ||
|
||
|
||
def qwen2_vl_model_forward( | ||
self, | ||
input_ids: torch.LongTensor = None, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_values: Optional[List[torch.FloatTensor]] = None, | ||
inputs_embeds: Optional[torch.FloatTensor] = None, | ||
use_cache: Optional[bool] = None, | ||
output_attentions: Optional[bool] = None, | ||
output_hidden_states: Optional[bool] = None, | ||
return_dict: Optional[bool] = None, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
) -> Union[Tuple, BaseModelOutputWithPast]: | ||
# IPEX-LLM OPT: kv cache and quantize kv cache and sdp | ||
inputs = input_ids if input_ids is not None else inputs_embeds | ||
use_cache = use_cache if use_cache is not None else self.config.use_cache | ||
use_cache = True if inputs.device.type == "xpu" else use_cache | ||
use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs) | ||
if use_cache: | ||
if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): | ||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) | ||
elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): | ||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) | ||
|
||
return Qwen2VLModel.forward( | ||
self=self, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
position_ids=position_ids, | ||
past_key_values=past_key_values, | ||
inputs_embeds=inputs_embeds, | ||
use_cache=use_cache, | ||
output_attentions=output_attentions, | ||
output_hidden_states=output_hidden_states, | ||
return_dict=return_dict, | ||
cache_position=cache_position, | ||
) | ||
|
||
|
||
def qwen2_vl_attention_forward( | ||
self, | ||
hidden_states: torch.Tensor, | ||
attention_mask: Optional[torch.Tensor] = None, | ||
position_ids: Optional[torch.LongTensor] = None, | ||
past_key_value: Optional[Cache] = None, | ||
output_attentions: bool = False, | ||
use_cache: bool = False, | ||
cache_position: Optional[torch.LongTensor] = None, | ||
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, | ||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | ||
bsz, q_len, _ = hidden_states.size() | ||
|
||
qkv = self.qkv_proj(hidden_states) | ||
qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) | ||
qkv = qkv.transpose(1, 2) | ||
query_states, key_states, value_states = qkv.split([self.num_heads, | ||
self.num_key_value_heads, | ||
self.num_key_value_heads], dim=1) | ||
|
||
if position_embeddings is None: | ||
cos, sin = self.rotary_emb(value_states, position_ids) | ||
else: | ||
cos, sin = position_embeddings | ||
query_states, key_states = apply_multimodal_rotary_pos_emb( | ||
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"] | ||
) | ||
|
||
kv_seq_len = key_states.shape[-2] | ||
if past_key_value is not None: | ||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} | ||
key_states, value_states = past_key_value.update(key_states, value_states, | ||
self.layer_idx, cache_kwargs) | ||
kv_seq_len = key_states.shape[-2] | ||
|
||
attn_weights = None | ||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): | ||
import xe_addons | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, | ||
attention_mask) | ||
else: | ||
attn_output = xe_addons.sdp(query_states, key_states, value_states, | ||
attention_mask) | ||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): | ||
import xe_addons | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, | ||
value_states, attention_mask) | ||
else: | ||
attn_output = xe_addons.sdp_causal(query_states, key_states, | ||
value_states, attention_mask) | ||
else: | ||
if isinstance(past_key_value, DynamicFp8Cache): | ||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, | ||
query_states.dtype) | ||
# repeat k/v heads if n_kv_heads < n_heads | ||
key_states = repeat_kv(key_states, self.num_key_value_groups) | ||
value_states = repeat_kv(value_states, self.num_key_value_groups) | ||
|
||
attn_weights = torch.matmul(query_states, | ||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim) | ||
|
||
if attention_mask is not None: # no matter the length, we just slice it | ||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] | ||
attn_weights = attn_weights + causal_mask | ||
|
||
# upcast attention to fp32 | ||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, | ||
dtype=torch.float32).to(query_states.dtype) | ||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, | ||
training=self.training) | ||
attn_output = torch.matmul(attn_weights, value_states) | ||
|
||
attn_output = attn_output.transpose(1, 2).contiguous() | ||
attn_output = attn_output.reshape(bsz, q_len, -1) | ||
|
||
attn_output = self.o_proj(attn_output) | ||
|
||
if not output_attentions: | ||
attn_weights = None | ||
|
||
return attn_output, attn_weights, past_key_value |