Intel® Edge AI Performance Evaluation Toolkit is an Edge AI customer enabling tool that has been designed to easily qualify and evaluate platform deep learning inference performance.
It consists of scripts, configuration files, Intel Thermal Analysis Tool (TAT) workspace file and optimized OpenVINO INT8 IR model and brief explanation below,
-
OS setup scripts - are used to setup container running environment on both Ubuntu Linux and Windows OS.
-
OpenVINO POT quantization scripts and configuration files - are used to quantize OpenVINO FP32/FP16 IR models to INT8 by OpenVINO Post-Training Optimization Tool.
-
Benchmark scripts and Intel PTAT workspace file - are used to benchmark optimized INT8 IR model and monitor system frequency and thermal condition to qualify system performance.
- Intel® Core™ i7-1165G7 Processor
- Intel® Core™ i7-1185G7E Processor
- Intel® Celeron® 6305E
- Intel® Core™ i7-1265U Processor
- Intel® Core™ i9-12900 Processor
Intel® Edge AI Performance Evaluation is licensed under MIT License. By contributing to the project, you agree to the license and copyright terms therein and release your contribution under these terms.
Below are steps to get started for Ubuntu 20.04.4 and Windows 10 21H2
Install Ubuntu 20.04.4 https://ubuntu.com/tutorials/install-ubuntu-desktop#1-overview
Clone Intel® Edge AI Performance Evaluation Toolkit
sudo apt update
sudo apt upgrade
sudo apt install git
git clone https://github.com/intel/Intel-Edge-AI-Performance-Evaluation-Toolkit.git
Install docker utility by running
cd Intel-Edge-AI-Performance-Evaluation-Toolkit
bash tools/install_docker.sh
Reboot system.
Install Intel Power and Thermal Analysis Tool
Tool download link : Intel® Power And Thermal Analysis Tool
Loading Intel PTAT workspace file from ptat_workspace.xml
Run Benchmark and Quantization Scripts
- Copy yolo-v4-tf FP16_INT8 IR model to Downloads folder in Home directory
cd Intel-Edge-AI-Performance-Evaluation-Toolkit
cp -ar openvino_models/ $HOME/Downloads
- Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on CPU
bash run_yolo-v4-tf-int8-cpu_benchmark.sh
- Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on GPU
bash run_yolo-v4-tf-int8-gpu_benchmark.sh
- Run quantization on yolo-v3-tf FP16 IR model
bash quantize_yolo-v3-tf_int8.sh
Install Windows 10 21H1
-
Download Windows Insider Preview ISO (microsoft.com) and install
-
Install required graphic driver (30.0.101.xxxx)
Download Intel® Edge AI Performance Evaluation Toolkit github link below
Extract to C:\Users\Public\Intel-Edge-AI-Performance-Evaluation-Toolkit.
Enable Hypher-V (Run as Administator in PowerShell)
Please refere to tools\enable-hyper-v.p1 and run below,
Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Hyper-V –All
Press Y to reboot system.
Install WSL2 (Run as Administator in PowerShell) and Reboot
Please refere to tools\install_wsl2.p1 and run below,
wsl --install
Restart-Computer
After reboot, WSL will start automatically to install Ubuntu. Enter user name and password for WSL Ubuntu when prompt.
Install docker utility by running in WSL
cd /mnt/c/Users/Public/Intel-Edge-AI-Performance-Evaluation-Toolkit
bash tools/install_docker.sh
Reboot to activate docker settings.
Install Intel Power and Thermal Analysis Tool
Tool download link : Intel® Power And Thermal Analysis Tool
Launch Intel PTAT tool as administrator
Loading Intel PTAT workspace file from ptat_workspace.json
Run Benchmark and Quantization Scripts in WSL
- Copy yolo-v4-tf FP16_INT8 IR model to Downloads folder in Home directory
cd /mnt/c/Users/Public/Intel-Edge-AI-Performance-Evaluation-Toolkit
mkdir $HOME/Downloads
cp -ar openvino_models/ $HOME/Downloads
- Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on CPU
bash run_yolo-v4-tf-int8-cpu_benchmark.sh
- Run benchmark_app on yolo-v4-tf FP16_INT8 IR model on GPU
bash run_yolo-v4-tf-int8-gpu_benchmark.sh
- Run quantization on yolo-v3-tf FP16 IR model
sudo apt install unzip
bash tools/download_coco_dataset.sh
bash quantize_yolo-v3-tf_int8.sh
There are detail installation guides
For Intel® Data Center GPU Max Series and Intel® Data Center GPU Flex Series, please refer to https://dgpu-docs.intel.com/driver/installation.html.
For Arc GPUs, please refer to https://dgpu-docs.intel.com/driver/client/overview.html
See CONTRIBUTING for details. Thank you!
Please report questions, issues and suggestions using: GitHub* Issues