Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refine autoawq exporting code #261

Merged
merged 1 commit into from
Sep 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion auto_round/export/export_to_autogptq/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
import torch

from auto_round.utils import check_to_quantized, get_block_names, \
get_module, logger, get_layer_names_in_block, set_module
get_module, logger, set_module
import copy
import json
import os
Expand Down
83 changes: 56 additions & 27 deletions auto_round/export/export_to_awq/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,10 +35,46 @@
import torch
import torch.nn as nn
from auto_round.export.register import register_format
from auto_round.utils import convert_dtype_torch2str_hf, logger
from auto_round.utils import convert_dtype_torch2str_hf, logger, get_module, set_module
import copy
import json
from typing import Dict, List, Optional, Union
from .utils import WQLinear_GEMM, clear_memory, get_self_modules
from concurrent.futures import ThreadPoolExecutor
import threadpoolctl as tctl
from tqdm import tqdm


def pack_layer(name, model, layer_config, backend, pbar):
with tctl.threadpool_limits(limits=1):
pbar.set_description(f"packing {name}")
if name == "lm_head": ##dese not support lm-head
pbar.update(1)
return
config = layer_config[name]
if config["bits"] > 8:
pbar.update(1)
return
scale, zp = config["scale"], config["zp"]
scale = scale.t().contiguous()
zp = zp.t().contiguous()
config["zp"] = config["zp"].to(torch.float32)
bits = config["bits"]
group_size = config["group_size"]
linear_layer = get_module(model, name)
q_linear = WQLinear_GEMM.from_linear(
linear=linear_layer,
w_bit=bits,
group_size=group_size,
init_only=False,
scales=scale,
zeros=zp,
)
linear_layer.cpu()
q_linear.to("cpu")
set_module(model, name, q_linear)
clear_memory()
pbar.update(1)


@register_format("auto_awq")
Expand Down Expand Up @@ -67,36 +103,30 @@ def save_quantized_as_autoawq(output_dir, inplace=True, **kwargs):
else:
compressed_model = copy.deepcopy(model.to("cpu"))

from .utils import WQLinear_GEMM, clear_memory, get_self_modules
names = list(layer_config.keys())

q_linear_module = WQLinear_GEMM
self_modules = get_self_modules(compressed_model)
layers = []
for i in range(len(self_modules)):
module = self_modules[i]
named_linears = get_named_linears(module)
for name, linear_layer in named_linears.items():
key = get_module_name(compressed_model, linear_layer)
logger.info(f"packing {name}")
layers.append(key)
config = layer_config[key]
if config["bits"] > 8:
modules_to_not_convert.append(name)
continue
config["zp"] = config["zp"].to(torch.float32)
scale, zp = config["scale"], config["zp"]
scale = scale.t().contiguous()
zp = zp.t().contiguous()
q_linear = q_linear_module.from_linear(
linear=linear_layer,
w_bit=bits,
group_size=group_size,
init_only=False,
scales=scale,
zeros=zp,
)
linear_layer.cpu()
q_linear.to(next(module.parameters()).device)
set_op_by_name(module, name, q_linear)
clear_memory()

backend = None
with ThreadPoolExecutor(max_workers=2) as executor:
with tqdm(total=len(names), leave=True) as pbar:
def wrapper(name):
pack_layer(name, model, layer_config, backend, pbar)

for _ in executor.map(wrapper, names):
pass
if output_dir is None:
return model

quant_config = {}
quant_config["quant_method"] = "awq"
Expand All @@ -123,11 +153,11 @@ def save_quantized_as_autoawq(output_dir, inplace=True, **kwargs):


def save_quantized(
model,
save_dir,
quant_config,
safetensors=True,
shard_size="5GB",
model,
save_dir,
quant_config,
safetensors=True,
shard_size="5GB",
):
save_dir = save_dir[:-1] if save_dir[-1] == "/" else save_dir

Expand Down Expand Up @@ -220,4 +250,3 @@ def get_module_name(model, module_to_find):
if module is module_to_find:
return name
return None