Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

adamround bugfix, refine import #275

Merged
merged 1 commit into from
Oct 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
147 changes: 76 additions & 71 deletions auto_round/autoround.py
Original file line number Diff line number Diff line change
Expand Up @@ -1375,7 +1375,7 @@ class AutoOPTRound(AutoRound):
act_group_size (int): Group size for activation quantization. Default is None.
act_sym (bool): Whether to use symmetric activation quantization. Default is None.
act_dynamic (bool): Whether to use dynamic activation quantization. Default is True.

quant_block_list (list): A list whose elements are list of block's layer names to be quantized.
**kwargs: Additional keyword arguments.

Returns:
Expand Down Expand Up @@ -1418,44 +1418,46 @@ def __init__(
act_sym: bool = None,
act_dynamic: bool = True,
enable_norm_bias_tuning: bool = False,
quant_block_list: list = None,
optimizer="AdamW",
**kwargs,
):
super(AutoOPTRound, self).__init__(
model,
tokenizer,
bits,
group_size,
sym,
layer_config,
enable_full_range,
batch_size,
amp,
device,
lr_scheduler,
dataset,
enable_quanted_input,
enable_minmax_tuning,
lr,
minmax_lr,
low_gpu_mem_usage,
low_cpu_mem_usage,
iters,
seqlen,
nsamples,
sampler,
seed,
nblocks,
gradient_accumulate_steps,
not_use_best_mse,
dynamic_max_gap,
data_type,
scale_dtype,
act_bits,
act_group_size,
act_sym,
act_dynamic,
enable_norm_bias_tuning,
model=model,
tokenizer=tokenizer,
bits=bits,
group_size=group_size,
sym=sym,
layer_config=layer_config,
enable_full_range=enable_full_range,
batch_size=batch_size,
amp=amp,
device=device,
lr_scheduler=lr_scheduler,
dataset=dataset,
enable_quanted_input=enable_quanted_input,
enable_minmax_tuning=enable_minmax_tuning,
lr=lr,
minmax_lr=minmax_lr,
low_gpu_mem_usage=low_gpu_mem_usage,
low_cpu_mem_usage=low_cpu_mem_usage,
iters=iters,
seqlen=seqlen,
nsamples=nsamples,
sampler=sampler,
seed=seed,
nblocks=nblocks,
gradient_accumulate_steps=gradient_accumulate_steps,
not_use_best_mse=not_use_best_mse,
dynamic_max_gap=dynamic_max_gap,
data_type=data_type,
scale_dtype=scale_dtype,
act_bits=act_bits,
act_group_size=act_group_size,
act_sym=act_sym,
act_dynamic=act_dynamic,
enable_norm_bias_tuning=enable_norm_bias_tuning,
quant_block_list=quant_block_list,
**kwargs,
)

Expand Down Expand Up @@ -1544,7 +1546,7 @@ class AutoAdamRound(AutoOPTRound):
act_group_size (int): Group size for activation quantization. Default is None.
act_sym (bool): Whether to use symmetric activation quantization. Default is None.
act_dynamic (bool): Whether to use dynamic activation quantization. Default is True.

quant_block_list (list): A list whose elements are list of block's layer names to be quantized.
Returns:
The quantized model.
"""
Expand Down Expand Up @@ -1585,45 +1587,48 @@ def __init__(
act_sym: bool = None,
act_dynamic: bool = True,
enable_norm_bias_tuning: bool = False,
quant_block_list: list = None,
optimizer="AdamW",
**kwargs,
):
super(AutoAdamRound, self).__init__(
model,
tokenizer,
bits,
group_size,
sym,
layer_config,
enable_full_range,
batch_size,
amp,
device,
lr_scheduler,
dataset,
enable_quanted_input,
enable_minmax_tuning,
lr,
minmax_lr,
low_gpu_mem_usage,
low_cpu_mem_usage,
iters,
seqlen,
nsamples,
sampler,
seed,
nblocks,
gradient_accumulate_steps,
not_use_best_mse,
dynamic_max_gap,
data_type,
scale_dtype,
act_bits,
act_group_size,
act_sym,
act_dynamic,
enable_norm_bias_tuning,
optimizer,
model=model,
tokenizer=tokenizer,
bits=bits,
group_size=group_size,
sym=sym,
layer_config=layer_config,
enable_full_range=enable_full_range,
batch_size=batch_size,
amp=amp,
device=device,
lr_scheduler=lr_scheduler,
dataset=dataset,
enable_quanted_input=enable_quanted_input,
enable_minmax_tuning=enable_minmax_tuning,
lr=lr,
minmax_lr=minmax_lr,
low_gpu_mem_usage=low_gpu_mem_usage,
low_cpu_mem_usage=low_cpu_mem_usage,
iters=iters,
seqlen=seqlen,
nsamples=nsamples,
sampler=sampler,
seed=seed,
nblocks=nblocks,
gradient_accumulate_steps=gradient_accumulate_steps,
not_use_best_mse=not_use_best_mse,
dynamic_max_gap=dynamic_max_gap,
data_type=data_type,
scale_dtype=scale_dtype,
act_bits=act_bits,
act_group_size=act_group_size,
act_sym=act_sym,
act_dynamic=act_dynamic,
enable_norm_bias_tuning=enable_norm_bias_tuning,
quant_block_list=quant_block_list,
optimizer=optimizer,
**kwargs,
)


7 changes: 4 additions & 3 deletions auto_round/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -891,11 +891,11 @@ def get_library_version(library_name):
except pkg_resources.DistributionNotFound:
return f"{library_name} is not installed"
else:
import importlib_metadata # pylint: disable=E0401
import importlib.metadata # pylint: disable=E0401
try:
version = importlib_metadata.version(library_name)
version = importlib.metadata.version(library_name)
return version
except importlib_metadata.PackageNotFoundError:
except importlib.metadata.PackageNotFoundError:
return f"{library_name} is not installed"


Expand Down Expand Up @@ -972,3 +972,4 @@ def get_autogptq_packing_qlinear(backend, bits=4, group_size=128, sym=False):
)
return QuantLinear