Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions dl_bench/llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ def get_llm(name, dtype):

kwargs = {}
if name.startswith("llama2") and "HF_TOKEN" in os.environ:
kwargs = {"HF_TOKEN": os.environ.get("HF_TOKEN")}
kwargs = {"token": os.environ.get("HF_TOKEN")}

model_name, M, T = name2params[name]

Expand Down Expand Up @@ -75,14 +75,15 @@ def inference(self, backend):
# self.flops_per_sample = get_macs(self.model, self.in_shape, backend) * 2
self.model = backend.prepare_eval_transformer(self.model)

self.model.eval()
enabled = backend.dtype != torch.float32

n_items = 0
outputs = []
fw_times = []

self.model.eval()

# Ipex gives error with eval, other backends have no effect
# self.model.eval()
for i in range(self.n_iter):
print(f"Epoch {i+1}/{self.n_iter}")
cast = torch.autocast(enabled=enabled, device_type=backend.device_name)
Expand Down
6 changes: 4 additions & 2 deletions dl_bench/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def prepare_eval_transformer(self, model):
model = model.to(memory_format=torch.channels_last)

model.to(self.device)
with torch.inference_mode():
with torch.no_grad():
model.eval()
return self._compile_transformer_model(
self.compile_mode, model, dtype=self.dtype
Expand Down Expand Up @@ -160,7 +160,9 @@ def _compile_transformer_model(compile_mode, model, dtype=torch.bfloat16):
import intel_extension_for_pytorch as ipex

params = {} if dtype != torch.bfloat16 else {"dtype": torch.bfloat16}
compiled_model = ipex.optimize_transformers(model, **params)
#compiled_model = ipex.llm.optimize(model, **params, inplace=True, deployment_mode=True)
compiled_model = ipex.llm.optimize(model, **params)
# compiled_model = ipex.optimize_transformers(model, **params)
print("Compiled with ipex")
elif compile_mode == "ipex_onednn_graph":
raise NotImplementedError()
Expand Down
14 changes: 14 additions & 0 deletions tests/conda-envs/ipex-xpu.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
name: ipex
channels:
- intel
- conda-forge
dependencies:
- intel-aikit-pytorch
- pytorch>=2.0.1=*_xpu_*
- intel-extension-for-pytorch
- datasets
- accelerate
- sentencepiece
# The following packages are required to run benchmarks
- sqlalchemy>=2.0.0
- pytest
14 changes: 11 additions & 3 deletions tests/conda-envs/ipex.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,12 +3,20 @@ channels:
- intel
- conda-forge
dependencies:
- intel-aikit-pytorch
- pytorch>=2.0.1=*_xpu_*
- intel-extension-for-pytorch
- python=3.11
- datasets
- accelerate
- sentencepiece
# The following packages are required to run benchmarks
- sqlalchemy>=2.0.0
- pytest
- pip
- pip:
- --extra-index-url https://download.pytorch.org/whl/cpu
- torch
- torchvision
- torchaudio
- transformers==4.35.2
- intel-extension-for-pytorch
- --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/cpu/us/
- oneccl_bind_pt