Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add GPU example for MiniCPM-o-2_6 #12735

Merged
merged 13 commits into from
Jan 23, 2025
1 change: 1 addition & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -337,6 +337,7 @@ Over 70 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
| MiniCPM-o-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-o-2_6/) |
| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
| Bce-Embedding-Base-V1 | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Embedding) |
| Speech_Paraformer-Large | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
Expand Down
1 change: 1 addition & 0 deletions README.zh-CN.md
Original file line number Diff line number Diff line change
Expand Up @@ -337,6 +337,7 @@ See the demo of running [*Text-Generation-WebUI*](https://ipex-llm.readthedocs.i
| MiniCPM-V-2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
| MiniCPM-Llama3-V-2_5 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v-2_6) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
| MiniCPM-o-2_6 | | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-o-2_6/) |
| StableDiffusion | | [link](python/llm/example/GPU/HuggingFace/Multimodal/StableDiffusion) |
| Bce-Embedding-Base-V1 | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Embedding) |
| Speech_Paraformer-Large | | | [Python link](python/llm/example/NPU/HF-Transformers-AutoModels/Multimodal) |
Expand Down
164 changes: 164 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-o-2_6/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
# MiniCPM-o-2_6
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-o-2_6 model on [Intel GPUs](../../../README.md). For illustration purposes, we utilize [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6) as reference MiniCPM-o-2_6 model.

In the following examples, we will guide you to apply IPEX-LLM optimizations on MiniCPM-o-2_6 model for text/audio/image/video inputs.

## 0. Requirements & Installation

To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.

### 0.1 Install IPEX-LLM

- For **Intel Core™ Ultra Processors (Series 2) with processor number 2xxV (code name Lunar Lake)** on Windows:
```cmd
conda create -n llm python=3.11 libuv
conda activate llm

:: or --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/lnl/cn/
pip install --pre --upgrade ipex-llm[xpu_lnl] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/lnl/us/
pip install torchaudio==2.3.1.post0 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/lnl/us/
```
- For **Intel Arc B-Series GPU (code name Battlemage)** on Linux:
```cmd
conda create -n llm python=3.11
conda activate llm

# or --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
pip install --pre --upgrade ipex-llm[xpu-arc] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
pip install torchaudio==2.3.1.post0 --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```

> [!NOTE]
> We will update for installation on more Intel GPU platforms.

### 0.2 Install Required Pacakges for MiniCPM-o-2_6

```bash
conda activate llm

# refer to: https://huggingface.co/openbmb/MiniCPM-o-2_6#usage
pip install transformers==4.44.2 trl
pip install librosa==0.9.0
pip install soundfile==0.12.1
pip install moviepy
```

### 0.3 Runtime Configuration

- For **Intel Core™ Ultra Processors (Series 2) with processor number 2xxV (code name Lunar Lake)** on Windows:
```cmd
set SYCL_CACHE_PERSISTENT=1
```
- For **Intel Arc B-Series GPU (code name Battlemage)** on Linux:
```cmd
unset OCL_ICD_VENDOR
export SYCL_CACHE_PERSISTENT=1
```

> [!NOTE]
> We will update for runtime configuration on more Intel GPU platforms.

### 1. Example: Chat in Omni Mode
In [omni.py](./omni.py), we show a use case for a MiniCPM-V-2_6 model to chat in omni mode with IPEX-LLM INT4 optimizations on Intel GPUs. In this example, the model will take a video as input, and conduct inference based on the images and audio of this video.

For example, the video input shows a clip of an athlete swimming, with background audio asking "What the athlete is doing?". Then the model in omni mode should inference based on the images of the video and the question in audio.

#### 1.1 Running example

```bash
python omni.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --video-path VIDEO_PATH
```

Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for MiniCPM-o-2_6 model (e.g. `openbmb/MiniCPM-o-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-o-2_6'`.
- `--video-path VIDEO_PATH`: argument defining the video input.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

> [!TIP]
> In Omni mode, please make sure that the video input contains sound.

> [!TIP]
> You could just ignore the warning regarding `Some weights of the model checkpoint at xxx were not used when initializing MiniCPMO`.

### 2. Example: Chat with text/audio/image input
In [chat.py](./chat.py), we show a use case for a MiniCPM-V-2_6 model to chat based on text/audio/image, or a combination of two of them, with IPEX-LLM INT4 optimizations on Intel GPUs.

#### 2.1 Running example

- Chat with text input
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT
```

- Chat with audio input
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --audio-path AUDIO_PATH
```

- Chat with image input
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --image-path IMAGE_PATH
```

- Chat with text + audio inputs
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --audio-path AUDIO_PATH
```

- Chat with text + image inputs
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --image-path IMAGE_PATH
```

- Chat with audio + image inputs
```bash
python chat.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --audio-path AUDIO_PATH --image-path IMAGE_PATH
```


Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for MiniCPM-o-2_6 model (e.g. `openbmb/MiniCPM-o-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-o-2_6'`.
- `--prompt PROMPT`: argument defining the text input.
- `--audio-path AUDIO_PATH`: argument defining the audio input.
- `--image-path IMAGE_PATH`: argument defining the image input.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.

> [!TIP]
> You could just ignore the warning regarding `Some weights of the model checkpoint at xxx were not used when initializing MiniCPMO`.

#### 2.2 Sample Outputs

##### [openbmb/MiniCPM-o-2_6](https://huggingface.co/openbmb/MiniCPM-o-2_6)

The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):

<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a><br>
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg

And the sample audio is a person saying "What is in this image".

- Chat with text + image inputs
```log
Inference time: xxxx s
-------------------- Input Image Path --------------------
5602445367_3504763978_z.jpg
-------------------- Input Audio Path --------------------
None
-------------------- Input Prompt --------------------
What is in this image?
-------------------- Chat Output --------------------
The image features a young child holding and displaying her white teddy bear. She is wearing a pink dress, which complements the color of the stuffed toy she
```

- Chat with audio + image inputs:
```log
Inference time: xxxx s
-------------------- Input Image Path --------------------
5602445367_3504763978_z.jpg
-------------------- Input Audio Path --------------------
test_audio.wav
-------------------- Input Prompt --------------------
None
-------------------- Chat Output --------------------
In this image, there is a young girl holding and displaying her stuffed teddy bear. She appears to be the main subject of the photo, with her toy
```
119 changes: 119 additions & 0 deletions python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-o-2_6/chat.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import time
import torch
import librosa
import argparse
from PIL import Image
from transformers import AutoTokenizer
from ipex_llm.transformers import AutoModel


if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Chat with MiniCPM-o-2_6 with text/audio/image')
parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-o-2_6",
help='The Hugging Face or ModelScope repo id for the MiniCPM-o-2_6 model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--image-path', type=str,
help='The path to the image for inference.')
parser.add_argument('--audio-path', type=str,
help='The path to the audio for inference.')
parser.add_argument('--prompt', type=str,
help='Prompt for inference.')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')

args = parser.parse_args()

model_path = args.repo_id_or_model_path
image_path = args.image_path
audio_path = args.audio_path

modules_to_not_convert = []
init_vision = False
init_audio = False
if image_path is not None and os.path.exists(image_path):
init_vision = True
modules_to_not_convert += ["vpm", "resampler"]
if audio_path is not None and os.path.exists(audio_path):
init_audio = True
modules_to_not_convert += ["apm"]

# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_low_bit="sym_int4",
optimize_model=True,
trust_remote_code=True,
attn_implementation='sdpa',
use_cache=True,
init_vision=init_vision,
init_audio=init_audio,
init_tts=False,
modules_to_not_convert=modules_to_not_convert)

model = model.half().to('xpu')

tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)


# The following code for generation is adapted from
# https://huggingface.co/openbmb/MiniCPM-o-2_6#addressing-various-audio-understanding-tasks and
# https://huggingface.co/openbmb/MiniCPM-o-2_6#chat-with-single-image
content = []
if init_vision:
image_input = Image.open(image_path).convert('RGB')
content.append(image_input)
if args.prompt is not None:
content.append(args.prompt)
if init_audio:
audio_input, _ = librosa.load(audio_path, sr=16000, mono=True)
content.append(audio_input)
messages = [{'role': 'user', 'content': content}]


with torch.inference_mode():
# ipex_llm model needs a warmup, then inference time can be accurate
model.chat(
msgs=messages,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=args.n_predict,
)

st = time.time()
response = model.chat(
msgs=messages,
tokenizer=tokenizer,
sampling=True,
max_new_tokens=args.n_predict,
)
torch.xpu.synchronize()
end = time.time()

print(f'Inference time: {end-st} s')
print('-'*20, 'Input Image Path', '-'*20)
print(image_path)
print('-'*20, 'Input Audio Path', '-'*20)
print(audio_path)
print('-'*20, 'Input Prompt', '-'*20)
print(args.prompt)
print('-'*20, 'Chat Output', '-'*20)
print(response)

Loading
Loading