Skip to content

Commit

Permalink
Add progress bar for woq and sq (#1467)
Browse files Browse the repository at this point in the history
Co-authored-by: yuwenzho <yuwen.zhou@intel.com>
  • Loading branch information
mengniwang95 and yuwenzho authored Dec 18, 2023
1 parent f341da7 commit 4d26e3a
Show file tree
Hide file tree
Showing 4 changed files with 29 additions and 4 deletions.
1 change: 1 addition & 0 deletions neural_compressor/adaptor/ox_utils/calibration.py
Original file line number Diff line number Diff line change
Expand Up @@ -757,6 +757,7 @@ def calib_smooth(self, percentile, op_types, q_config):
max_vals_per_channel: max values per channel of input tensors
shape_infos: The shape information of input tensors
"""
logger.info("Start smooth model calibration.")
# add the input tensors of {op_types} to outputs of the model
tensors_to_node = self._get_input_tensor_of_ops(op_types)
self.model_wrapper.add_tensors_to_outputs(tensors_to_node.keys())
Expand Down
12 changes: 10 additions & 2 deletions neural_compressor/adaptor/ox_utils/smooth_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,13 @@
from onnx import helper, numpy_helper
from onnx import onnx_pb as onnx_proto

from neural_compressor.adaptor.ox_utils.util import _get_qrange_for_qType, is_B_transposed, quantize_data, to_numpy
from neural_compressor.adaptor.ox_utils.util import (
_get_qrange_for_qType,
is_B_transposed,
quantize_data,
simple_progress_bar,
to_numpy,
)
from neural_compressor.model.model import BaseModel
from neural_compressor.model.onnx_model import ONNXModel

Expand Down Expand Up @@ -562,6 +568,7 @@ def _get_smooth_scales(self, alpha, target_list=[]):
Returns:
the smooth scales for weights, currently one input tensor only have one scale
"""
logger.info("Start smooth scales collection.")
scales = {}
for tensor, nodes in self.tensors_to_node.items():
# if scales_per_op the key of scales is the node name, otherwise the activation of node
Expand Down Expand Up @@ -673,7 +680,8 @@ def _adjust_weights(self, scales):
Args:
scales (dict): The input scales
"""
for tensor_name, nodes in self.tensors_to_node.items():
for idx, (tensor_name, nodes) in enumerate(self.tensors_to_node.items()):
simple_progress_bar(len(self.tensors_to_node), idx + 1)
for node_info in nodes:
key = node_info[0] if self.scales_per_op else tensor_name
if key not in scales:
Expand Down
10 changes: 10 additions & 0 deletions neural_compressor/adaptor/ox_utils/util.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,16 @@
MAXIMUM_PROTOBUF = 2147483648


def simple_progress_bar(total, i):
"""Progress bar for cases where tqdm can't be used."""
progress = i / total
bar_length = 20
bar = "#" * int(bar_length * progress)
spaces = " " * (bar_length - len(bar))
percentage = progress * 100
print(f"\rProgress: [{bar}{spaces}] {percentage:.2f}%", end="")


def dtype_to_name(dtype_mapping, dtype):
"""Map data type and its string representation."""
return list(dtype_mapping.keys())[list(dtype_mapping.values()).index(dtype)]
Expand Down
10 changes: 8 additions & 2 deletions neural_compressor/adaptor/ox_utils/weight_only.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from onnx import onnx_pb as onnx_proto
from packaging.version import Version

from neural_compressor.adaptor.ox_utils.util import simple_progress_bar
from neural_compressor.model.model import BaseModel
from neural_compressor.model.onnx_model import ONNXModel
from neural_compressor.utils.utility import LazyImport
Expand Down Expand Up @@ -320,7 +321,12 @@ def rtn_quantize(
base_dir = os.path.dirname(model.model_path) if model.model_path is not None else ""
new_nodes = []
remove_nodes = []
total_num = len([i for i in model.nodes() if i.op_type in ["MatMul"]])
curr_id = 0
for node in model.nodes():
if node.op_type in ["MatMul"]:
curr_id += 1
simple_progress_bar(total_num, curr_id)
if (
node.op_type in ["MatMul"]
and model.get_initializer(node.input[1]) is not None
Expand Down Expand Up @@ -1025,8 +1031,8 @@ def gptq_quantize(

new_nodes = []
remove_nodes = []

for input_name in output_names:
for idx, input_name in enumerate(output_names):
simple_progress_bar(len(output_names), idx + 1)
node_list = []
weights = []

Expand Down

0 comments on commit 4d26e3a

Please sign in to comment.