Skip to content

Commit

Permalink
Support ONNXRT layer-wise W8A8 quantization (#1389)
Browse files Browse the repository at this point in the history
Signed-off-by: yuwenzho <yuwen.zhou@intel.com>
  • Loading branch information
yuwenzho authored Nov 21, 2023
1 parent 8447d70 commit 6142e48
Show file tree
Hide file tree
Showing 5 changed files with 648 additions and 42 deletions.
189 changes: 168 additions & 21 deletions neural_compressor/adaptor/onnxrt.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@
from neural_compressor.adaptor.ox_utils.util import ONNXRT_BACKENDS, PROVIDERS, to_numpy
from neural_compressor.adaptor.query import QueryBackendCapability
from neural_compressor.data.dataloaders.base_dataloader import BaseDataLoader
from neural_compressor.model.onnx_model import ONNXModel
from neural_compressor.utils.utility import GLOBAL_STATE, MODE, CpuInfo, LazyImport, Statistics, dump_elapsed_time

onnx = LazyImport("onnx")
Expand Down Expand Up @@ -267,8 +268,6 @@ def quantize(self, tune_cfg, model, data_loader, q_func=None):
): # pragma: no cover
from onnx import version_converter

from neural_compressor.model.onnx_model import ONNXModel

try:
model = self._rename_node(ONNXModel(version_converter.convert_version(model.model, 15)))
except:
Expand Down Expand Up @@ -308,18 +307,146 @@ def quantize(self, tune_cfg, model, data_loader, q_func=None):

iterations = tune_cfg.get("calib_iteration", 1)
calib_sampling_size = tune_cfg.get("calib_sampling_size", 1)
if not self.dynamic:
calib_iterations = self._reset_calib_iter(data_loader, calib_sampling_size, iterations)
quantize_params = self._get_quantize_params(tmp_model, data_loader, quantize_config, calib_iterations)

if self.recipes.get("layer_wise_quant", False) and not self.dynamic:
# layer-wise quantization
# details refer to docs/source/quantization_weight_only.md#layer-wise-quantization
_model_to_split = copy.deepcopy(tmp_model)

split_nodes = _model_to_split.find_split_nodes()
logger.info(
"Will split model into {} parts to do layer-wise quantization".format(
len([node.name for node in split_nodes]) + 1
)
)
logger.debug(
"Will split model with these nodes for layer-wise quantization: {}".format(
[node.name for node in split_nodes]
)
)

split_idx = 1
model_to_split = [_model_to_split]
dataloader_for_split_model = [data_loader]
quantize_params = {}
quantized_model_merged = None

while len(model_to_split) != 0:
split_model = model_to_split.pop(0)
split_node = split_nodes.pop(0)
save_both_split_models = True if len(split_nodes) == 0 else False
shape_infer = True if split_idx == 1 else False

# split model with given split_node
split_model_part_1, split_model_part_2 = split_model.split_model_with_node(
split_node.name, tmp_model.model_path, shape_infer, save_both_split_models
)
if not save_both_split_models:
# append split_model_part_2 to do next split
model_to_split.append(split_model_part_2)

logger.info("Quantize split model {}".format(split_idx))
# get quantize params of split model
split_quantize_params, dataloder_for_next_split_model = self._get_split_model_quantize_params(
split_model_part_1, dataloader_for_split_model, quantize_config, calib_sampling_size, iterations
)
dataloader_for_split_model.append(dataloder_for_next_split_model)
quantize_params.update(split_quantize_params)

# quantize split model
quantized_model_merged = self._quantize_split_model(
split_model_part_1, quantize_config, split_quantize_params, quantized_model_merged
)

split_idx += 1

# if this is the last split, then quantize the last split model
if save_both_split_models:
logger.info("Quantize split model {}".format(split_idx))
# get quantize params of split model
split_quantize_params, dataloder_for_next_split_model = self._get_split_model_quantize_params(
split_model_part_2, dataloader_for_split_model, quantize_config, calib_sampling_size, iterations
)
quantize_params.update(split_quantize_params)

# quantize split model
quantized_model_merged = self._quantize_split_model(
split_model_part_2, quantize_config, split_quantize_params, quantized_model_merged
)
quantized_model_merged.re_org_output(tmp_model.output()) # re-org output as the origin output

self.quantize_params = quantize_params
tmp_model.q_config = self._generate_qconfig(model.model, tune_cfg, quantize_params)
tmp_model.model = quantized_model_merged.model
self.quantize_config = quantize_config # update so other methods can know current configs
self._dump_model_op_stats(tmp_model)
tmp_model.topological_sort()
tmp_model.check_is_large_model()
return tmp_model

else:
quantize_params = None
self.quantize_params = quantize_params
if not self.dynamic:
calib_iterations = self._reset_calib_iter(data_loader, calib_sampling_size, iterations)
quantize_params, _ = self._get_quantize_params(
tmp_model, data_loader, quantize_config, calib_iterations
)
else:
quantize_params = None
self.quantize_params = quantize_params

from neural_compressor import options
from neural_compressor.adaptor.ox_utils.quantizer import Quantizer

quantizer = Quantizer(
tmp_model,
quantize_config,
format,
self.static,
quantize_params,
self.quantizable_op_types,
self.query_handler.get_fallback_list(),
self.reduce_range,
options.onnxrt.qdq_setting.AddQDQPairToWeight
if "add_qdq_pair_to_weight" not in self.recipes
else self.recipes.get("add_qdq_pair_to_weight", False),
options.onnxrt.qdq_setting.OpTypesToExcludeOutputQuantizatioin
if "optypes_to_exclude_output_quant" not in self.recipes
else self.recipes.get("optypes_to_exclude_output_quant", []),
options.onnxrt.qdq_setting.DedicatedQDQPair
if "dedicated_qdq_pair" not in self.recipes
else self.recipes.get("dedicated_qdq_pair", False),
self.backend,
)
quantizer.quantize_model()
tmp_model.q_config = self._generate_qconfig(model.model, tune_cfg, quantize_params)
tmp_model.model = quantizer.model.model
self.quantize_config = quantize_config # update so other methods can know current configs
self._dump_model_op_stats(tmp_model)
tmp_model.topological_sort()
return tmp_model

def _get_split_model_quantize_params(
self, split_model, split_dataloader, quantize_config, calib_sampling_size, iterations
):
"""Get quantize params for current split model and get dataloader for next split model."""
dataloader = split_dataloader.pop(0)
calib_iterations = self._reset_calib_iter(dataloader, calib_sampling_size, iterations)
split_quantize_params, dataloder_for_next_split_model = self._get_quantize_params(
split_model,
dataloader,
quantize_config,
calib_iterations,
split_model_input_names=split_model.input(),
)
return split_quantize_params, dataloder_for_next_split_model

def _quantize_split_model(self, split_model, quantize_config, quantize_params, quantized_model_merged):
"""Quantize split model, and merge the quantized models to generate final model."""
from neural_compressor import options
from neural_compressor.adaptor.ox_utils.quantizer import Quantizer

quantizer = Quantizer(
tmp_model,
split_model,
quantize_config,
format,
self.static,
Expand All @@ -339,12 +466,16 @@ def quantize(self, tune_cfg, model, data_loader, q_func=None):
self.backend,
)
quantizer.quantize_model()
tmp_model.q_config = self._generate_qconfig(model.model, tune_cfg, quantize_params)
tmp_model.model = quantizer.model.model
self.quantize_config = quantize_config # update so other methods can know current configs
self._dump_model_op_stats(tmp_model)
tmp_model.topological_sort()
return tmp_model
split_model.model = quantizer.model.model
split_model.topological_sort()

if quantized_model_merged is None:
quantized_model_merged = quantizer.model
quantized_model_merged.write_external_data_to_new_location(overwrite=True)
else:
quantized_model_merged.merge_split_models(quantizer.model)

return quantized_model_merged

def _check_backend_available(self, backend):
"""Check backend is available or not."""
Expand Down Expand Up @@ -570,7 +701,7 @@ def _dump_model_op_stats(self, model):
Statistics(output_data, header="Mixed Precision Statistics", field_names=field_names).print_stat()
self.optype_statistics = field_names, output_data

def _get_quantize_params(self, model, data_loader, quantize_config, iterations):
def _get_quantize_params(self, model, data_loader, quantize_config, iterations, **kwargs):
from neural_compressor.adaptor.ox_utils.calibration import ONNXRTAugment
from neural_compressor.model.onnx_model import ONNXModel

Expand All @@ -588,10 +719,12 @@ def _get_quantize_params(self, model, data_loader, quantize_config, iterations):
iterations=list(range(0, iterations)),
backend=self.backend,
reduce_range=self.reduce_range,
**kwargs,
)
self.min_max = augment.dump_minmax(quantize_config)
quantize_params = augment.dump_calibration(quantize_config, min_max=self.min_max)
return quantize_params
dataloder_for_next_split_model = augment.dataloder_for_next_split_model
return quantize_params, dataloder_for_next_split_model

def inspect_tensor(
self,
Expand All @@ -606,7 +739,6 @@ def inspect_tensor(
):
"""The function is used by tune strategy class for dumping tensor info."""
from neural_compressor.adaptor.ox_utils.calibration import ONNXRTAugment
from neural_compressor.model.onnx_model import ONNXModel
from neural_compressor.utils.utility import dump_data_to_local

if not isinstance(model, ONNXModel):
Expand Down Expand Up @@ -763,6 +895,9 @@ def _pre_optimize(self, model, level=1):
}
if not isinstance(self.query_handler.get_graph_optimization(), list):
level = self.query_handler.get_graph_optimization()
elif self.recipes.get("layer_wise_quant"):
level = "ENABLE_BASIC"
logger.info("Force set graph optimization level to 'ENABLE_BASIC' for layer-wise quantization")
elif options.onnxrt.graph_optimization.level is not None:
level = options.onnxrt.graph_optimization.level
elif self.recipes.get("graph_optimization_level", None) is not None:
Expand All @@ -778,10 +913,23 @@ def _pre_optimize(self, model, level=1):
)
sess_options.graph_optimization_level = optimization_levels[level]
sess_options.optimized_model_filepath = os.path.join(self.work_space, "Optimized_model.onnx")
if model.is_large_model and self.recipes.get("layer_wise_quant", False):
# save the model and external data for layer-wise quantization
external_data_filename = os.path.basename(sess_options.optimized_model_filepath) + "_data"
external_data_file_threshold = 1024
sess_options.add_session_config_entry(
"session.optimized_model_external_initializers_file_name", external_data_filename
)
sess_options.add_session_config_entry(
"session.optimized_model_external_initializers_min_size_in_bytes", str(external_data_file_threshold)
)
logger.info("Saving optimized model for layer-wise quantization. This may take a while...")

if sys.version_info < (3, 11) and find_spec("onnxruntime_extensions"): # pragma: no cover
from onnxruntime_extensions import get_library_path

sess_options.register_custom_ops_library(get_library_path())

if not model.is_large_model:
sess = ort.InferenceSession(
model.model.SerializeToString(), sess_options, providers=["CPUExecutionProvider"]
Expand All @@ -792,13 +940,14 @@ def _pre_optimize(self, model, level=1):
else: # pragma: no cover
logger.warning("Please use model path instead of onnx model object to quantize")
del sess

tmp_model = onnx.load(sess_options.optimized_model_filepath, load_external_data=False)

if model.is_large_model: # pragma: no cover
# load external data if model is large and not layer wise quantization
if model.is_large_model and not self.recipes.get("layer_wise_quant", False): # pragma: no cover
from onnx.external_data_helper import load_external_data_for_model

load_external_data_for_model(tmp_model, os.path.split(model.model_path)[0])

model.model_path = sess_options.optimized_model_filepath
model.model = (
self._replace_gemm_with_matmul(tmp_model).model
Expand Down Expand Up @@ -903,8 +1052,6 @@ def _replace_gemm_with_matmul(model):
new_nodes = []
from onnx import numpy_helper

from neural_compressor.model.onnx_model import ONNXModel

if not isinstance(model, ONNXModel):
model = ONNXModel(model)

Expand Down
41 changes: 36 additions & 5 deletions neural_compressor/adaptor/ox_utils/calibration.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ def __init__(
iterations=[],
backend="CPUExecutionProvider",
reduce_range=False,
**kwargs,
):
"""Initialization.
Expand Down Expand Up @@ -94,6 +95,16 @@ def __init__(
self.ort_version = Version(onnxruntime.__version__)
self.reduce_range = reduce_range

self.layer_wise = True if len(kwargs.get("split_model_input_names", [])) != 0 else False
if self.layer_wise:
self.split_model_input_names = kwargs.get("split_model_input_names", [])
self._dataloder_for_next_split_model = None

@property
def dataloder_for_next_split_model(self):
"""Return dataloader for next split model for layer-wise quantization."""
return self._dataloder_for_next_split_model

def augment_graph(self, activation_only=False, weight_only=False):
"""Augment_graph.
Expand Down Expand Up @@ -245,12 +256,13 @@ def get_intermediate_outputs(self, q_config=None):

len_inputs = len(session.get_inputs())
inputs_names = [session.get_inputs()[i].name for i in range(len_inputs)]
len_outputs = len(session.get_outputs())
outputs_names = [session.get_outputs()[i].name for i in range(len_outputs)]

node_output_names = [
output.name if output.name not in self.dequantized_output else self.dequantized_output[output.name]
for output in session.get_outputs()
]

augment_model_wrapper = (
ONNXModel(self.augmented_model)
if not self.model_wrapper.is_large_model
Expand All @@ -271,6 +283,7 @@ def get_intermediate_outputs(self, q_config=None):
output_dicts = {}
intermediate_tensor = {}
name_to_calibrator = {}
ort_inputs_for_next_split_model = []
for idx, (inputs, labels) in enumerate(self.dataloader):
ort_inputs = {}

Expand All @@ -281,15 +294,25 @@ def get_intermediate_outputs(self, q_config=None):
else:
ort_inputs.update({inputs_names[0]: to_numpy(inputs)})
else:
assert len_inputs == len(inputs), "number of input tensors must align with graph inputs"
if not self.layer_wise:
# for layer-wise calibration
assert len_inputs == len(inputs), "number of input tensors must align with graph inputs"

if isinstance(inputs, dict):
for name, input in inputs.items():
ort_inputs.update({name: to_numpy(input)})
else:
ort_inputs = dict(zip(inputs_names, [to_numpy(i) for i in inputs]))

def _collect_data():
def _collect_data(ort_inputs):
if self.layer_wise:
# for layer-wise calibration
ort_inputs = {
input_name: input_tensor
for input_name, input_tensor in ort_inputs.items()
if input_name in self.split_model_input_names
}

for output_idx, output in enumerate(session.run(None, ort_inputs)):
if q_config is not None and output.size != 0:
node_name = name_to_node[node_output_names[output_idx]]
Expand Down Expand Up @@ -321,13 +344,18 @@ def _collect_data():
elif q_config is None:
output_dicts.setdefault(node_output_names[output_idx], []).append(output)

if self.layer_wise:
# for layer-wise calibration
ort_inputs.update({outputs_names[output_idx]: output})
ort_inputs_for_next_split_model.append((ort_inputs, labels))

if self.iterations != []:
if idx > max(self.iterations):
break
if idx in self.iterations:
_collect_data()
_collect_data(ort_inputs)
else:
_collect_data()
_collect_data(ort_inputs)

# for kl and percentile method, collect calibration range after all tensors are collected.
merged_dict = intermediate_tensor
Expand All @@ -344,6 +372,9 @@ def _collect_data():
output_dicts.setdefault(output_name, []).append(list(calibrator.calib_range))
calibrator.clear()
del calibrator

self._dataloder_for_next_split_model = ort_inputs_for_next_split_model

return list(output_dicts.keys()), output_dicts

def _dequantize(self, tensor, scale_tensor, zo_tensor):
Expand Down
Loading

0 comments on commit 6142e48

Please sign in to comment.