-
Notifications
You must be signed in to change notification settings - Fork 262
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add wanda Signed-off-by: Guo, Heng <heng.guo@intel.com>
- Loading branch information
Showing
7 changed files
with
784 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,354 @@ | ||
# !/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import transformers | ||
|
||
from neural_compressor.utils.utility import LazyImport | ||
|
||
torch = LazyImport("torch") | ||
from .wanda.wrapper import WrappedGPT | ||
|
||
|
||
def return_reorder_indice(input_tensor): | ||
""" | ||
For instance: | ||
[[1., -2., 3.], | ||
[-2, 2., -4], | ||
[5., 6., -7], | ||
[-6, -7, -4]] | ||
return indices of | ||
[[-2., 3., 1.], | ||
[-2., -4., 2.], | ||
[-7., 6., 5.], | ||
[-6., -7., -4.]] | ||
Description: The relative order in the positive number remains unchanged, | ||
and the relative order in the negative number is flipped. | ||
""" | ||
positive_tensor = input_tensor.clone() | ||
negative_tensor = input_tensor.clone() | ||
|
||
positive_mask = positive_tensor > 0 | ||
negative_mask = negative_tensor < 0 | ||
|
||
positive_indices = ( | ||
torch.arange(0, input_tensor.shape[1], device=input_tensor.device) | ||
.to(torch.float64) | ||
.repeat(input_tensor.shape[0], 1) | ||
) | ||
negative_indices = ( | ||
torch.arange(0, input_tensor.shape[1], device=input_tensor.device) | ||
.to(torch.float64) | ||
.repeat(input_tensor.shape[0], 1) | ||
) | ||
|
||
positive_indices[~positive_mask] = float("inf") | ||
negative_indices[~negative_mask] = float("inf") | ||
|
||
positive_value, _ = torch.sort(positive_indices, dim=1) | ||
negative_value, _ = torch.sort(negative_indices, dim=1) | ||
|
||
positive_value = torch.flip(positive_value, dims=[1]) | ||
|
||
negative_value[negative_value == float("inf")] = 0 | ||
positive_value[positive_value == float("inf")] = 0 | ||
|
||
reorder_indice = (positive_value + negative_value).to(torch.int64) | ||
|
||
return reorder_indice | ||
|
||
|
||
def DSnoT( | ||
initial_metric, | ||
sparsity_ratio, | ||
wrapped_layer, | ||
prune_n=0, | ||
prune_m=0, | ||
pow_of_var_regrowing=1.0, | ||
max_cycle_time=100, | ||
without_same_sign=True, | ||
update_threshold=0.1, | ||
): | ||
""" | ||
Args: | ||
pow_of_var_regrowing: The power of variance, float type, default=1. | ||
max_cycle_time: Max cycle time. | ||
without_same_sign, without same sign, bool, default True. | ||
update_threshold: update threshold, float, default 0.1. | ||
See the original paper: https://arxiv.org/pdf/2310.08915.pdf | ||
""" | ||
assert isinstance(wrapped_layer, WrappedGPT) | ||
W = wrapped_layer.layer.weight.data | ||
if isinstance(wrapped_layer, transformers.Conv1D): | ||
W = W.t() | ||
DSnoT_metric = W * wrapped_layer.sum_metric_row.reshape((1, -1)) | ||
weight_mask = torch.zeros_like(initial_metric) == 1 | ||
|
||
if prune_n != 0: # pragma: no cover | ||
initial_prune_indices = torch.zeros( | ||
(initial_metric.shape[0], 0), | ||
dtype=torch.int64, | ||
device=initial_metric.device, | ||
) | ||
initial_res_indices = torch.zeros( | ||
(initial_metric.shape[0], 0), | ||
dtype=torch.int64, | ||
device=initial_metric.device, | ||
) | ||
for ii in range(initial_metric.shape[1]): | ||
if ii % prune_m == 0: | ||
tmp = initial_metric[:, ii : (ii + prune_m)].float() | ||
_, tmp_all_indices = torch.sort(tmp, dim=1) | ||
tmp_all_indices += ii | ||
res_prune_n = prune_m - prune_n | ||
tmp_indices, tmp_res_indices = torch.split( | ||
tmp_all_indices, | ||
split_size_or_sections=[prune_n, res_prune_n], | ||
dim=1, | ||
) | ||
|
||
initial_prune_indices = torch.cat((initial_prune_indices, tmp_indices), dim=1) | ||
initial_res_indices = torch.cat((initial_res_indices, tmp_res_indices), dim=1) | ||
weight_mask.scatter_(1, tmp_indices, True) | ||
|
||
metric_for_regrowing = DSnoT_metric.clone() | ||
|
||
metric_for_regrowing.scatter_(1, initial_res_indices, 0) | ||
|
||
reconstruction_error = torch.sum(metric_for_regrowing, dim=1, keepdim=True) | ||
initialize_error_sign = torch.sign(reconstruction_error) | ||
|
||
if pow_of_var_regrowing: | ||
metric_for_regrowing /= torch.pow( | ||
wrapped_layer.var.reshape((1, -1)), | ||
pow_of_var_regrowing, | ||
) | ||
|
||
_, regrowing_indices_block = torch.sort(metric_for_regrowing, dim=1, stable=True) | ||
|
||
indice_indice_list_for_regrowing = torch.zeros( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
last_one = regrowing_indices_block.shape[-1] - 1 | ||
indice_indice_list_for_regrowing[:, 1] = last_one | ||
update_num_for_regrowing = torch.ones( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
update_num_for_regrowing[:, 1] = -1 | ||
|
||
initial_metric.scatter_(1, initial_prune_indices, float("inf")) | ||
W_metric_max_value = torch.max(initial_metric, dim=1, keepdim=True)[0] + 1 | ||
|
||
cycle_time = 1 | ||
update_mask = torch.ones_like(reconstruction_error, dtype=torch.bool) | ||
while not (torch.all(update_mask == 0.0) or cycle_time > max_cycle_time): | ||
cycle_time += 1 | ||
|
||
# regrowing | ||
indice_of_indice_indice_list_for_regrowing = (reconstruction_error > 0).int().to(torch.int64) | ||
indice_indice_for_regrowing = torch.gather( | ||
indice_indice_list_for_regrowing, | ||
1, | ||
indice_of_indice_indice_list_for_regrowing, | ||
) | ||
regrowing_indice = torch.gather( | ||
regrowing_indices_block, | ||
1, | ||
indice_indice_for_regrowing.to(torch.int64), | ||
) | ||
regrowing_metric = DSnoT_metric.gather(1, regrowing_indice.to(torch.int64)) | ||
recover_block_start_indice = regrowing_indice - regrowing_indice % prune_m | ||
recover_block_indices = ( | ||
torch.arange(0, prune_m, device=recover_block_start_indice.device).repeat( | ||
recover_block_start_indice.shape[1], 1 | ||
) | ||
+ recover_block_start_indice | ||
) | ||
pruning_block = torch.gather(initial_metric, 1, recover_block_indices.to(torch.int64)) | ||
pruning_wanda_metric, pruning_indice = torch.topk(pruning_block, 1, dim=1, largest=False) | ||
pruning_indice += recover_block_start_indice | ||
pruning_metric = DSnoT_metric.gather(1, pruning_indice.to(torch.int64)) | ||
reconstruction_error_after = reconstruction_error + pruning_metric - regrowing_metric | ||
update_mask = ( | ||
update_mask | ||
& (initialize_error_sign == torch.sign(reconstruction_error_after)) | ||
& (abs(reconstruction_error) > update_threshold) | ||
) | ||
initial_metric.scatter_(1, pruning_indice, W_metric_max_value) | ||
weight_mask.scatter_(1, pruning_indice, update_mask) | ||
weight_mask.scatter_(1, regrowing_indice, ~update_mask) | ||
reconstruction_error += torch.where( | ||
update_mask, | ||
pruning_metric, | ||
torch.zeros_like(pruning_metric), | ||
) | ||
reconstruction_error -= torch.where( | ||
update_mask, | ||
regrowing_metric, | ||
torch.zeros_like(regrowing_metric), | ||
) | ||
indice_indice_list_for_regrowing.scatter_( | ||
1, | ||
indice_of_indice_indice_list_for_regrowing, | ||
indice_indice_for_regrowing | ||
+ update_num_for_regrowing.gather(1, indice_of_indice_indice_list_for_regrowing), | ||
) | ||
else: | ||
_, sorted_initial_indice = torch.sort(initial_metric, dim=-1, stable=True) | ||
sparsity_num = int(initial_metric.shape[-1] * sparsity_ratio) | ||
res_sparsity_num = sorted_initial_indice.shape[-1] - sparsity_num | ||
|
||
initial_prune_indices, initial_res_indices = torch.split( | ||
sorted_initial_indice, | ||
split_size_or_sections=[sparsity_num, res_sparsity_num], | ||
dim=1, | ||
) | ||
|
||
weight_mask.scatter_(1, initial_prune_indices, True) | ||
metric_for_regrowing = DSnoT_metric.clone() | ||
wanda_metric = torch.abs(W) * torch.sqrt(wrapped_layer.scaler_row.reshape((1, -1))) | ||
metric_for_regrowing.scatter_(1, initial_res_indices, 0) | ||
reconstruction_error = torch.sum(metric_for_regrowing, dim=1, keepdim=True) | ||
initialize_error_sign = torch.sign(reconstruction_error) | ||
if pow_of_var_regrowing: | ||
metric_for_regrowing /= torch.pow( | ||
wrapped_layer.var.reshape((1, -1)), | ||
pow_of_var_regrowing, | ||
) | ||
|
||
_, regrowing_indices_block = torch.sort(metric_for_regrowing, dim=1, stable=True) | ||
wanda_metric.scatter_(1, initial_prune_indices, float("inf")) | ||
wanda_res_indices, _ = torch.split( | ||
torch.sort(wanda_metric, dim=1, stable=True)[1], | ||
split_size_or_sections=[res_sparsity_num, sparsity_num], | ||
dim=1, | ||
) | ||
reorder_indice_of_pruning_indice = return_reorder_indice(torch.gather(DSnoT_metric, 1, wanda_res_indices)) | ||
pruning_indices_block = torch.gather(wanda_res_indices, 1, reorder_indice_of_pruning_indice) | ||
|
||
indice_indice_list_for_regrowing = torch.zeros( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
last_one = regrowing_indices_block.shape[-1] - 1 | ||
indice_indice_list_for_regrowing[:, 1] = last_one | ||
|
||
update_num_for_regrowing = torch.ones( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
update_num_for_regrowing[:, 1] = -1 | ||
|
||
indice_indice_list_for_pruning = torch.zeros( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
last_one = pruning_indices_block.shape[-1] - 1 | ||
indice_indice_list_for_pruning[:, 1] = last_one | ||
|
||
update_num_for_pruning = torch.ones( | ||
(reconstruction_error.shape[0], 2), | ||
device=reconstruction_error.device, | ||
dtype=torch.long, | ||
) | ||
update_num_for_pruning[:, 1] = -1 | ||
|
||
update_mask = torch.ones_like(reconstruction_error, dtype=torch.bool) | ||
cycle_time = 0 | ||
while not (torch.all(update_mask == 0.0) or cycle_time >= max_cycle_time): | ||
cycle_time += 1 | ||
|
||
# regrowing | ||
indice_of_indice_indice_list_for_regrowing = (reconstruction_error > 0).int().to(torch.int64) | ||
|
||
indice_indice_for_regrowing = torch.gather( | ||
indice_indice_list_for_regrowing, | ||
1, | ||
indice_of_indice_indice_list_for_regrowing, | ||
) | ||
|
||
regrowing_indice = torch.gather( | ||
regrowing_indices_block, | ||
1, | ||
indice_indice_for_regrowing.to(torch.int64), | ||
) | ||
|
||
regrowing_metric = DSnoT_metric.gather(1, regrowing_indice.to(torch.int64)) | ||
|
||
indice_indice_list_for_regrowing.scatter_( | ||
1, | ||
indice_of_indice_indice_list_for_regrowing, | ||
indice_indice_for_regrowing | ||
+ update_num_for_regrowing.gather(1, indice_of_indice_indice_list_for_regrowing), | ||
) | ||
|
||
# pruning | ||
indice_of_indice_indice_list_for_pruning = (reconstruction_error < 0).int().to(torch.int64) | ||
|
||
indice_indice_for_pruning = torch.gather( | ||
indice_indice_list_for_pruning, | ||
1, | ||
indice_of_indice_indice_list_for_pruning, | ||
) | ||
|
||
pruning_indice = torch.gather( | ||
pruning_indices_block, | ||
1, | ||
indice_indice_for_pruning.to(torch.int64), | ||
) | ||
|
||
pruning_metric = DSnoT_metric.gather(1, pruning_indice.to(torch.int64)) | ||
|
||
indice_indice_list_for_pruning.scatter_( | ||
1, | ||
indice_of_indice_indice_list_for_pruning, | ||
indice_indice_for_pruning + update_num_for_pruning.gather(1, indice_of_indice_indice_list_for_pruning), | ||
) | ||
|
||
# change mask | ||
reconstruction_error_after = reconstruction_error + pruning_metric - regrowing_metric | ||
|
||
if without_same_sign: | ||
update_mask = update_mask & (abs(reconstruction_error) > update_threshold) | ||
else: | ||
update_mask = ( | ||
update_mask | ||
& (abs(reconstruction_error) > update_threshold) | ||
& (initialize_error_sign == torch.sign(reconstruction_error_after)) | ||
) | ||
|
||
weight_mask.scatter_(1, pruning_indice, update_mask) | ||
weight_mask.scatter_(1, regrowing_indice, ~update_mask) | ||
|
||
reconstruction_error += torch.where( | ||
update_mask, | ||
pruning_metric, | ||
torch.zeros_like(pruning_metric), | ||
) | ||
reconstruction_error -= torch.where( | ||
update_mask, | ||
regrowing_metric, | ||
torch.zeros_like(regrowing_metric), | ||
) | ||
|
||
return weight_mask |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
"""Wanda init.""" | ||
# !/usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# | ||
# Copyright (c) 2024 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from .prune import prune_wanda |
Oops, something went wrong.