Torch Nightly WHL Tests #143
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: Torch Nightly WHL Tests | |
on: | |
schedule: | |
# GMT+8 21:00 every workday | |
- cron: '0 14 * * 0-4' | |
# GMT+8 0:00 Saturday | |
- cron: '0 17 * * 5' | |
workflow_dispatch: | |
inputs: | |
pytorch: | |
required: false | |
type: string | |
default: 'nightly' | |
description: Pytorch branch/commit | |
ut: | |
required: false | |
type: string | |
default: 'torch_xpu' | |
description: UT scope. `op_regression,op_regression_dev1,op_extended,op_ut,torch_xpu`. Delimiter is comma | |
suite: | |
required: true | |
type: string | |
default: 'huggingface' | |
description: Dynamo benchmarks test suite. `huggingface,timm_models,torchbench`. Delimiter is comma | |
dt: | |
required: true | |
type: string | |
default: 'float32' | |
description: Data precision of the test. `float32,bfloat16,float16,amp_bf16,amp_fp16`. Delimiter is comma | |
mode: | |
required: true | |
type: string | |
default: 'inference' | |
description: Test mode. `inference,training`. Delimiter is comma | |
scenario: | |
required: true | |
type: string | |
default: 'accuracy' | |
description: Test scenario. `accuracy,performance`. Delimiter is comma | |
model: | |
required: false | |
type: string | |
default: '' | |
description: Model. Will only run this one mode if set | |
python: | |
required: false | |
type: string | |
default: '3.10' | |
description: Python version | |
permissions: read-all | |
concurrency: | |
group: ${{ github.workflow }}-${{ github.sha }}-${{ github.event_name }}-${{ inputs.pytorch }}-${{ inputs.ut }}-${{ inputs.suite }}-${{ inputs.dt }}-${{ inputs.mode }}-${{ inputs.scenario }}-${{ inputs.model }}-${{ inputs.python }} | |
cancel-in-progress: true | |
jobs: | |
Linux-Nightly-Ondemand-UT-WHL-Tests: | |
uses: ./.github/workflows/_linux_ut.yml | |
with: | |
ut: ${{ github.event_name == 'schedule' && 'op_regression,op_regression_dev1,op_extended,op_ut,torch_xpu' || inputs.ut }} | |
python: ${{ github.event_name == 'schedule' && '3.10' || inputs.python }} | |
pytorch: nightly_wheel | |
runner: e2e_internal | |
Linux-Nightly-Ondemand-E2E-WHL-Tests: | |
runs-on: e2e_internal | |
# Don't run on forked repos | |
if: github.repository_owner == 'intel' | |
timeout-minutes: 36000 | |
env: | |
pytorch: ${{ github.event_name == 'schedule' && 'nightly' || inputs.pytorch }} | |
ut: ${{ github.event_name == 'schedule' && 'op_regression,op_regression_dev1,op_extended,op_ut,torch_xpu' || inputs.ut }} | |
python: ${{ github.event_name == 'schedule' && '3.10' || inputs.python }} | |
outputs: | |
TORCH_BRANCH_ID: ${{ steps.installed.outputs.TORCH_BRANCH_ID }} | |
TORCH_COMMIT_ID: ${{ steps.installed.outputs.TORCH_COMMIT_ID }} | |
TORCH_XPU_OPS_COMMIT: ${{ steps.installed.outputs.TORCH_XPU_OPS_COMMIT }} | |
TORCHBENCH_COMMIT_ID: ${{ steps.pinned.outputs.TORCHBENCH_COMMIT_ID }} | |
TORCHVISION_COMMIT_ID: ${{ steps.pinned.outputs.TORCHVISION_COMMIT_ID }} | |
TORCHAUDIO_COMMIT_ID: ${{ steps.pinned.outputs.TORCHAUDIO_COMMIT_ID }} | |
TRANSFORMERS_VERSION: ${{ steps.pinned.outputs.TRANSFORMERS_VERSION }} | |
TIMM_COMMIT_ID: ${{ steps.pinned.outputs.TIMM_COMMIT_ID }} | |
TRITON_COMMIT_ID: ${{ steps.pinned.outputs.TRITON_COMMIT_ID }} | |
DRIVER_VERSION: ${{ steps.pinned.outputs.DRIVER_VERSION }} | |
KERNEL_VERSION: ${{ steps.pinned.outputs.KERNEL_VERSION }} | |
BUNDLE_VERSION: ${{ steps.pinned.outputs.BUNDLE_VERSION }} | |
OS_PRETTY_NAME: ${{ steps.pinned.outputs.OS_PRETTY_NAME }} | |
GCC_VERSION: ${{ steps.pinned.outputs.GCC_VERSION }} | |
TIMEOUT_MODELS: ${{ steps.summary.outputs.TIMEOUT_MODELS }} | |
steps: | |
- name: Checkout torch-xpu-ops | |
uses: actions/checkout@v4 | |
- name: Prepare Conda ENV | |
run: | | |
rm -rf ${HOME}/mengfeil/myvenv-e2e | |
/usr/bin/python3.10 -m venv ${HOME}/mengfeil/myvenv-e2e | |
source ${HOME}/mengfeil/myvenv-e2e/bin/activate | |
# pip install mkl-static==2025.0.1 mkl-include==2025.0.1 | |
pip install pandas scipy tqdm | |
- name: Prepare Stock Pytorch | |
id: installed | |
run: | | |
pwd | |
source ${HOME}/mengfeil/myvenv-e2e/bin/activate | |
pip install torch torchvision torchaudio --pre --index-url https://download.pytorch.org/whl/nightly/xpu | |
echo "TORCH_BRANCH_ID=$(python -c 'import torch; print(torch.__version__)')" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
TORCH_COMMIT_ID=$(python -c 'import torch; print(torch.version.git_version)') | |
echo "TORCH_COMMIT_ID=${TORCH_COMMIT_ID}" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
cd ../ && rm -rf pytorch | |
git clone https://github.com/pytorch/pytorch pytorch | |
cd pytorch && git checkout ${TORCH_COMMIT_ID} | |
# apply PRs for stock pytorch | |
pip install requests | |
# python ../torch-xpu-ops/.github/scripts/apply_torch_pr.py | |
git status && git show -s | |
pip install -r requirements.txt | |
TORCH_XPU_OPS_COMMIT=$(<third_party/xpu.txt) | |
echo "TORCH_XPU_OPS_COMMIT=${TORCH_XPU_OPS_COMMIT}" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
rm -rf third_party/torch-xpu-ops | |
git clone https://github.com/intel/torch-xpu-ops.git third_party/torch-xpu-ops | |
cd third_party/torch-xpu-ops | |
git checkout ${TORCH_XPU_OPS_COMMIT} | |
- name: Identify pinned versions | |
id: pinned | |
run: | | |
source ${HOME}/mengfeil/myvenv-e2e/bin/activate | |
echo "TORCHVISION_COMMIT_ID=$(python -c 'import torchvision; print(torchvision.version.git_version)')" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "TORCHAUDIO_COMMIT_ID=$(python -c 'import torchaudio; print(torchaudio.version.git_version)')" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "TRITON_COMMIT_ID=$(python -c 'import triton; print(triton.__version__)')" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
cd ../pytorch | |
echo "TORCHBENCH_COMMIT_ID=$(<third_party/torch-xpu-ops/.github/ci_commit_pins/torchbench.txt)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "TRANSFORMERS_VERSION=$(<.ci/docker/ci_commit_pins/huggingface.txt)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "TIMM_COMMIT_ID=$(<.ci/docker/ci_commit_pins/timm.txt)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "MODEL_ONLY_NAME=${{ inputs.model }}" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "DRIVER_VERSION=$(dkms status 2>&1 |grep 'intel-i915-dkms' |sed 's/.*\///;s/,.*//')" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "KERNEL_VERSION=$(uname -rv 2>&1)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "BUNDLE_VERSION=$(pip list |grep cmplr |head -n 1)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
. /etc/os-release | |
echo "OS_PRETTY_NAME=${PRETTY_NAME}" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo "GCC_VERSION=$(gcc -dumpversion)" |tee -a "${GITHUB_OUTPUT}" >> "${GITHUB_ENV}" | |
echo ${GITHUB_ENV} | |
- name: Show GITHUB_ENV | |
run: | | |
echo "$GITHUB_ENV" | |
rm -rf ../pytorch/inductor_log | |
rm -rf /tmp/torchinductor_* | |
# Nihglty launch | |
- name: Nightly Huggingface FP32/BF16/FP16 Inference & Training Accuracy Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 14 * * 0-4' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: huggingface | |
env_prepare: true | |
dt: float32,bfloat16,float16,amp_bf16,amp_fp16 | |
mode: inference,training | |
scenario: accuracy | |
pytorch: nightly_wheel | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
- name: Nightly Torchbench BF16 Training Accuracy Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 14 * * 0-4' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: torchbench | |
dt: bfloat16 | |
mode: training | |
scenario: accuracy | |
pytorch: nightly_wheel | |
env_prepare: true | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
- name: Nightly Timm_models FP16 Training Accuracy Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 14 * * 0-4' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: timm_models | |
dt: float16 | |
mode: training | |
scenario: accuracy | |
pytorch: nightly_wheel | |
env_prepare: true | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
# Weekly launch | |
- name: Weekly Huggingface Full Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 17 * * 5' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: huggingface | |
env_prepare: true | |
dt: float32,bfloat16,float16,amp_bf16,amp_fp16 | |
mode: inference,training | |
scenario: accuracy,performance | |
pytorch: nightly_wheel | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
- name: Weekly Torchbench Full Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 17 * * 5' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: torchbench | |
env_prepare: true | |
dt: float32,bfloat16,float16,amp_bf16,amp_fp16 | |
mode: inference,training | |
scenario: accuracy,performance | |
pytorch: nightly_wheel | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
- name: Weekly Timm_models Full Test | |
if: github.event_name == 'schedule' && github.event.schedule == '0 17 * * 5' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: timm_models | |
env_prepare: true | |
dt: float32,bfloat16,float16,amp_bf16,amp_fp16 | |
mode: inference,training | |
scenario: accuracy,performance | |
pytorch: nightly_wheel | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
# On-demand launch | |
- name: OnDemand Test (${{ inputs.suite }} ${{ inputs.dt }} ${{ inputs.mode }} ${{ inputs.scenario }}) | |
if: github.event_name != 'schedule' | |
uses: ./.github/actions/inductor-xpu-e2e-test | |
with: | |
suite: ${{ inputs.suite }} | |
env_prepare: true | |
dt: ${{ inputs.dt }} | |
mode: ${{ inputs.mode }} | |
scenario: ${{ inputs.scenario }} | |
pytorch: nightly_wheel | |
hf_token: ${{ secrets.HUGGING_FACE_HUB_TOKEN }} | |
- name: Summarize archieve files | |
id: summary | |
if: ${{ ! cancelled() }} | |
run: | | |
rm -rf ${{ github.workspace }}/upload_files | |
cp -r ${{ github.workspace }}/../pytorch/inductor_log ${{ github.workspace }}/upload_files | |
mkdir -p ${{ github.workspace }}/../../_backup/ && cd ${{ github.workspace }}/../../_backup/ | |
find . -type f -name "*.tgz" -mtime +3 -delete # delete files older than 3 days | |
tar zcf xpu-inductor-${GITHUB_RUN_ID}.tgz -C ${{ github.workspace }}/upload_files/ . # backup logs | |
- name: Upload Inductor XPU E2E Data | |
if: ${{ ! cancelled() }} | |
uses: actions/upload-artifact@v4 | |
with: | |
name: Inductor-XPU-E2E-Data-${{ github.event.pull_request.number || github.sha }} | |
path: ${{ github.workspace }}/upload_files |