Skip to content

Commit

Permalink
output the correct geometry
Browse files Browse the repository at this point in the history
  • Loading branch information
ocefpaf committed May 29, 2024
1 parent c503870 commit 83293b8
Showing 1 changed file with 55 additions and 48 deletions.
103 changes: 55 additions & 48 deletions ioos_metrics/ioos_metrics.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
from gliderpy.fetchers import GliderDataFetcher
from shapely.geometry import LineString
from shapely.geometry import LineString, Point

from ioos_metrics.national_platforms import national_platforms

Expand Down Expand Up @@ -206,6 +206,18 @@ def _metadata(info_df) -> dict:
),
}

def _make_track_geom(df) -> "pd.DataFrame":
geom = Point if df.shape[0] == 1 else LineString

return geom(
(lon, lat)
for (lon, lat) in zip(
df["longitude (degrees_east)"],
df["latitude (degrees_north)"],
strict=False,
)
)

def _computed_metadata(dataset_id) -> dict:
"""Download the minimum amount of data possible for the computed
metadata.
Expand All @@ -220,16 +232,20 @@ def _computed_metadata(dataset_id) -> dict:
"longitude",
"time",
]
df = glider_grab.to_pandas()
df = glider_grab.fetcher.to_pandas(distinct=True)
df["time (UTC)"] = pd.to_datetime(df["time (UTC)"])
df = df.set_index("time (UTC)")
df = df.sort_index()
track = _make_track_geom(df)
days = df.index[-1].ceil("D") - df.index[0].floor("D")
return {
"deployment_lat": df["latitude"].iloc[0],
"deployment_lon": df["longitude"].iloc[0],
"deployment_lat": df["latitude (degrees_north)"].iloc[0],
"deployment_lon": df["longitude (degrees_east)"].iloc[0],
"num_profiles": len(df),
# Profiles are not unique! Cannot use this!!
# "num_profiles": len(set(df['profile_id']))
"days": days,
"track": track,
}

glider_grab = GliderDataFetcher()
Expand All @@ -245,21 +261,8 @@ def _computed_metadata(dataset_id) -> dict:
)

metadata = {}
glider_grab.fetcher.variables = ["longitude", "latitude"]
for _, row in list(df.iterrows()):
dataset_id = row["Dataset ID"]

glider_grab.fetcher.dataset_id = dataset_id
track = glider_grab.fetcher.to_pandas(distinct=True)
track = LineString(
(lon, lat)
for (lon, lat) in zip(
track["longitude (degrees_east)"],
track["latitude (degrees_north)"],
strict=False,
)
)

info_url = row["info_url"].replace("html", "csv")
info_df = pd.read_csv(info_url)
info = _metadata(info_df)
Expand All @@ -271,7 +274,6 @@ def _computed_metadata(dataset_id) -> dict:
"This could be a server side error and the metrics will be incomplete!",
)
continue
info.update({"track": track})
metadata.update({dataset_id: info})
return pd.DataFrame(metadata).T

Expand Down Expand Up @@ -554,70 +556,75 @@ def hf_radar_installations():
# This is a hardcoded number at the moment!
return 165


@functools.lru_cache(maxsize=128)
def mbon_stats():
"""
This function collects download statistics about MBON affiliated datasets shared with the Ocean Biodiversity
"""This function collects download statistics about MBON affiliated datasets shared with the Ocean Biodiversity
Information System (OBIS) and the Global Biodiversity Information Framework (GBIF). The function returns a
dataframe with rows corresponding to each paper citing a dataset.
"""
import pyobis
import urllib.parse

import pyobis

# collect dataset information from OBIS
institution_id = 23070
query = pyobis.dataset.search(instituteid=institution_id)
df = pd.DataFrame(query.execute())
df_obis = pd.DataFrame.from_records(df["results"])
df_obis.columns = [f'obis_{col}' for col in df_obis.columns]
df_obis.columns = [f"obis_{col}" for col in df_obis.columns]

df_mapping = pd.DataFrame()
base_url = 'https://api.gbif.org'
base_url = "https://api.gbif.org"
# iterate through each OBIS dataset to gather uuid from GBIF
# create a mapping table
for title in df_obis['obis_title']:
for title in df_obis["obis_title"]:
string = title
query = f'{base_url}/v1/dataset/search?q={urllib.parse.quote(string)}'
df = pd.read_json(query, orient='index').T
query = f"{base_url}/v1/dataset/search?q={urllib.parse.quote(string)}"
df = pd.read_json(query, orient="index").T

# build a DataFrame with the info we need more accessible
df_mapping = pd.concat([df_mapping, pd.DataFrame({
'gbif_uuid': df['results'].values[0][0]['key'],
'title': [df['results'].values[0][0]['title']],
'obis_id': [df_obis.loc[df_obis['obis_title']==title,'obis_id'].to_string(index=False)],
'doi': [df['results'].values[0][0]['doi']]
})], ignore_index=True)

df_mapping = pd.concat(
[
df_mapping,
pd.DataFrame(
{
"gbif_uuid": df["results"].values[0][0]["key"],
"title": [df["results"].values[0][0]["title"]],
"obis_id": [df_obis.loc[df_obis["obis_title"] == title, "obis_id"].to_string(index=False)],
"doi": [df["results"].values[0][0]["doi"]],
},
),
],
ignore_index=True,
)

df_gbif = pd.DataFrame()
for key in df_mapping['gbif_uuid']:

url = 'https://api.gbif.org/v1/literature/export?format=CSV&gbifDatasetKey={}'.format(key)
for key in df_mapping["gbif_uuid"]:
url = f"https://api.gbif.org/v1/literature/export?format=CSV&gbifDatasetKey={key}"
df2 = pd.read_csv(url) # collect liturature cited information
df2.columns = ['literature_' + str(col) for col in df2.columns]
df2['gbif_uuid'] = key
df2.columns = ["literature_" + str(col) for col in df2.columns]
df2["gbif_uuid"] = key

df_gbif = pd.concat([df2,df_gbif], ignore_index=True)
df_gbif = pd.concat([df2, df_gbif], ignore_index=True)

# merge the OBIS and GBIF data frames together
df_obis = df_obis.merge(df_mapping, on='obis_id')
df_obis = df_obis.merge(df_mapping, on="obis_id")

# add gbif download stats

for key in df_obis['gbif_uuid']:
url = f'https://api.gbif.org/v1/occurrence/download/statistics/export?datasetKey={key}'
df2 = pd.read_csv(url,sep='\t')
df2_group = df2.groupby('year').agg({'number_downloads':'sum'})
for key in df_obis["gbif_uuid"]:
url = f"https://api.gbif.org/v1/occurrence/download/statistics/export?datasetKey={key}"
df2 = pd.read_csv(url, sep="\t")
df2_group = df2.groupby("year").agg({"number_downloads": "sum"})

df_obis.loc[df_obis['gbif_uuid']==key,'gbif_downloads'] = str(df2_group.to_dict())
df_obis.loc[df_obis["gbif_uuid"] == key, "gbif_downloads"] = str(df2_group.to_dict())

df_out = df_gbif.merge(df_obis, on='gbif_uuid')
df_out = df_gbif.merge(df_obis, on="gbif_uuid")

return df_out




def update_metrics(*, debug=False):
"""Load previous metrics and update the spreadsheet."""
df = previous_metrics()
Expand Down

0 comments on commit 83293b8

Please sign in to comment.