Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Request for sharing the code for training networks? #39

Closed
poperson1205 opened this issue Jun 10, 2019 · 3 comments
Closed

Request for sharing the code for training networks? #39

poperson1205 opened this issue Jun 10, 2019 · 3 comments

Comments

@poperson1205
Copy link

Would you please share your code for training networks?
I want to train and fine-tune the models with my own dataset.

@ZouaghiHoussem
Copy link

Does anyone have the training code?

@loaysh2010
Copy link

I need the training code too. Any one solve this issue ?

@SRavit1
Copy link

SRavit1 commented Sep 21, 2021

Same here. Training code would really help.

ipazc pushed a commit that referenced this issue Oct 7, 2024
…tch processing support

- Completely refactored the MTCNN implementation following best coding practices.
- Optimized code by removing unnecessary transpositions, resulting in faster computation. Fixes #22.
- Transposed convolutional layer weights to eliminate the need for additional transpositions during preprocessing and postprocessing, improving overall efficiency.
- Converted preprocessing and postprocessing functions into matrix operations to accelerate computation. Fixes #14, #110.
- Added batch processing support to enhance performance for multiple input images. Fixes #9, #71.
- Migrated network architecture to TensorFlow >= 2.12 for improved compatibility and performance. Fixes #80, #82, #90, #91, #93, #98, #104, #112, #114, #115, #116.
- Extensively documented the project with detailed explanations of thresholds and parameters. Fixes #12, #41, #52, #57, #99, #122, #117.
- Added support for selecting computation backends (CPU, GPU, etc.) with the `device` parameter. Fixes #23.
- Added new parameters to control the result format (support for x1, y1, x2, y2 instead of x1, y1, width, height) and the ability to return tensors instead of dictionaries. Fixes #72.
- Configured PyLint support to ensure code quality and style adherence.
- Organized functions into specific modules (`mtcnn.utils.*` and `mtcnn.stages.*`) for better modularity.
- Created Jupyter notebooks for visualization and ablation studies of each stage, allowing detailed exploration of layers, weights, and intermediate results. Fixes #88, #102.
- Added a comprehensive training guide for the model. Fixes #35, #39.
- Updated README with information on the new version, including the complete Read the Docs documentation that describes the process, theoretical background, and usage examples. Fixes #53, #73.
- Configured GitHub Actions for continuous integration and delivery (CI/CD).
- Fixed memory leak by switching to a more efficient TensorFlow method (`model(tensor)` instead of `model.predict(tensor)`). Fixes #87, #109, #121, #125, #128.
- Made TensorFlow an optional dependency to prevent conflicts with user-installed versions. Fixes #95.
- Added comprehensive unit tests for increased reliability and coverage.
@ipazc ipazc mentioned this issue Oct 8, 2024
ipazc pushed a commit that referenced this issue Oct 8, 2024
…tch processing support

- Completely refactored the MTCNN implementation following best coding practices.
- Optimized code by removing unnecessary transpositions, resulting in faster computation. Fixes #22.
- Transposed convolutional layer weights to eliminate the need for additional transpositions during preprocessing and postprocessing, improving overall efficiency.
- Converted preprocessing and postprocessing functions into matrix operations to accelerate computation. Fixes #14, #110.
- Added batch processing support to enhance performance for multiple input images. Fixes #9, #71.
- Migrated network architecture to TensorFlow >= 2.12 for improved compatibility and performance. Fixes #80, #82, #90, #91, #93, #98, #104, #112, #114, #115, #116.
- Extensively documented the project with detailed explanations of thresholds and parameters. Fixes #12, #41, #52, #57, #99, #122, #117.
- Added support for selecting computation backends (CPU, GPU, etc.) with the `device` parameter. Fixes #23.
- Added new parameters to control the result format (support for x1, y1, x2, y2 instead of x1, y1, width, height) and the ability to return tensors instead of dictionaries. Fixes #72.
- Configured PyLint support to ensure code quality and style adherence.
- Organized functions into specific modules (`mtcnn.utils.*` and `mtcnn.stages.*`) for better modularity.
- Created Jupyter notebooks for visualization and ablation studies of each stage, allowing detailed exploration of layers, weights, and intermediate results. Fixes #88, #102.
- Added a comprehensive training guide for the model. Fixes #35, #39.
- Updated README with information on the new version, including the complete Read the Docs documentation that describes the process, theoretical background, and usage examples. Fixes #53, #73.
- Configured GitHub Actions for continuous integration and delivery (CI/CD).
- Fixed memory leak by switching to a more efficient TensorFlow method (`model(tensor)` instead of `model.predict(tensor)`). Fixes #87, #109, #121, #125, #128.
- Made TensorFlow an optional dependency to prevent conflicts with user-installed versions. Fixes #95.
- Added comprehensive unit tests for increased reliability and coverage.
@ipazc ipazc closed this as completed Oct 8, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

5 participants