cargo build --release
gpuproxy --url <ip>:<port> --log-level <lv> run --db-dsn <database url> --disable-worker <true/false> --fs-resource-path <path> --allow-type <task type> --max-tasks <int> --no-gpu <true/false> --resource-type <db/fs>
- url: the endpoint that the gpuproxy listens
- log-level: program log level
- db-dsn: database connecton string (support sqlite3/mysql)
- disable-worker: whether to prohibit the gruproxy from running as a worker
- fs-resource-path: if the resources are stored in file system, then configure the folder path here
- max-tasks: how many tasks can run at most
- no-gpu: whether to use gpu
- resource-type: resource type (fs/db)
- allow-type: task types supported by workers
gpuproxy_worker run --url http://<ip>:<port> --db-dsn <database url> --fs-resource-path <path> --allow-type <task type> --max-tasks <int> --no-gpu <true/false> --resource-type <db/fs>
- url: the endpoint that the gpuproxy, connect to the gpuproxy to get the task and submit the execution result
- log-level: program log level
- db-dsn: database connecton string sqlite3
- fs-resource-path: if the resources are stored in file system, then configure the folder path here
- max-tasks: how many tasks can run at most
- no-gpu: whether to use gpu
- resource-type: resource type (fs/rpc)
- allow-types: task types supported by workers
the plugin needs to be configured into the venus-worker configuration file, loaded and run as a plugin
[[processors.c2]]
bin="<cluster_c2_plugin 插件路径>"
args = ["run", "--gpuproxy-url", "http://127.0.0.1:18888","--log-level", "trace"] #插件参数
after the program runs, the c2 task will be automatically submitted to the task center, and the final result will be continuously polled