Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Replace GPT2TokenizerFast with tiktoken-based tokenizer (#44) #44

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion autopr/repos/completions_repo.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@ def __init__(
self.context_limit = context_limit
self.temperature = temperature

self.tokenizer = tokenizer.get_tokenizer(max_tokens)
self.tokenizer = tokenizer.get_tiktoken_tokenizer()
self.log = structlog.get_logger(repo=self.__class__.__name__)

def complete(
Expand Down
11 changes: 4 additions & 7 deletions autopr/utils/repo.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,21 +121,18 @@ def repo_to_file_descriptors(repo: Repo, context_window: int, file_chunk_size: i
log.debug(f"Error decoding file: {blob.path}")
continue

tokenizer = get_tokenizer(context_window)
tokenizer = get_tiktoken_tokenizer(context_window)

tokens = tokenizer.encode(content)
# Split into chunks up to the last newline
tokens = tokenizer(content)
chunks: list[list[tuple[int, str]]] = []
line_buffer = []
for i, line in enumerate(content.splitlines()):
line_buffer.append((i, line))
# FIXME speed this up
token_length = len(tokenizer.encode(
'\n'.join([l[1] for l in line_buffer])
))
token_length = len(tokenizer('\n'.join([l[1] for l in line_buffer])))
if token_length >= file_chunk_size:
chunks.append(line_buffer)
line_buffer = []
line_buffer = []
if line_buffer:
chunks.append(line_buffer)

Expand Down
13 changes: 8 additions & 5 deletions autopr/utils/tokenizer.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,14 @@
import transformers
import tiktoken
from tiktoken import Tokenizer

_tokenizer_cache: dict[int, transformers.GPT2TokenizerFast] = {}
_tokenizer_cache: dict[int, Tokenizer] = {}


def get_tokenizer(model_max_length: int):
def get_tiktoken_tokenizer(model_max_length: int):
global _tokenizer_cache

if model_max_length not in _tokenizer_cache:
_tokenizer_cache[model_max_length] = transformers.GPT2TokenizerFast.from_pretrained('gpt2', model_max_length=model_max_length)
_tokenizer_cache[model_max_length] = Tokenizer()
return _tokenizer_cache[model_max_length]

def get_tokenizer(model_max_length: int):
return get_tiktoken_tokenizer(model_max_length)
27 changes: 27 additions & 0 deletions tests/test_tokenizer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
import pytest
from autopr.utils.tokenizer import get_tiktoken_tokenizer

def test_tiktoken_tokenizer_with_simple_strings():
tokenizer = get_tiktoken_tokenizer()

text = "This is a simple text."
expected_token_count = 6

token_count = tokenizer(text)
assert token_count == expected_token_count, f"Expected {expected_token_count} tokens, got {token_count}"

def test_tiktoken_tokenizer_with_chat_messages():
tokenizer = get_tiktoken_tokenizer()

messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "name": "Alice", "content": "What's the capital of France?"},
{"role": "assistant", "content": "The capital of France is Paris."},
]
expected_token_count = 38

token_count = tokenizer(messages)
assert token_count == expected_token_count, f"Expected {expected_token_count} tokens, got {token_count}"

if __name__ == "__main__":
pytest.main()