Classifai is a powerful and user-friendly command-line tool for AI-powered classification tasks. It leverages the capabilities of large language models to provide accurate and efficient classification of various types of content.
- Easy-to-use command-line interface
- Supports multiple classification categories
- Utilizes advanced language models for high accuracy
- Customizable prompts and examples
- Supports both OpenAI and OpenRouter models
pip install pipx
pipx install classifai
-
Multiple classification with Examples:
classifai 'news.ycombinator.com' 'facebook.com' 'ai.meta.com' \ --classes 'signal' 'noise' 'neutral' \ --examples "github.com:signal" "arxiv.org:signal" "instagram.com:noise" \ "pintrest.com:noise" "anthropic.ai:signal" "twitter.com:noise" \ --model openrouter/openai/gpt-4-0314
[ { "content": "news.ycombinator.com", "classification": "signal", "score": 1.0 }, { "content": "facebook.com", "classification": "noise", "score": 1.0 }, { "content": "ai.meta.com", "classification": "signal", "score": 1.0 } ]
-
Terminal commands classification:
'df -h' 'chown -R user:user /' -c 'safe' 'danger' 'neutral' -e "ls:safe" "rm:danger" "echo:neutral" --m gpt-4o-mini
[ { "content": "df -h", "classification": "safe", "score": 1.0 }, { "content": "chown -R user:user /", "classification": "danger", "score": 1.0 } ]
-
Classify a tweet
classifai $tweet --classes 'AI' 'ASI' 'AGI' -m gpt-4o-mini
[ { "content": "Superintelligence is within reach.\n\nBuilding safe superintelligence (SSI) is the most important technical problem of our\u200b\u200b time.\n\nWe've started the world\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.", "classification": "ASI", "score": 1.0 } ]
classifai $tweet --classes 'PROGRAMING' 'MACHINE-LEARNING' -m gpt-4o-mini
[ { "content": "Superintelligence is within reach.\n\nBuilding safe superintelligence (SSI) is the most important technical problem of our\u200b\u200b time.\n\nWe've started the world\u2019s first straight-shot SSI lab, with one goal and one product: a safe superintelligence.", "classification": "MACHINE-LEARNING", "score": 0.833334466588825 } ]
-
Verify facts
classifai "<source>$(curl -s docs.jina.ai)</source><statement>Jina ai has an image generation api" -c True False -m gpt-4o --no-content
[ { "class": "false", "score": 0.99997334352929 } ]
class-tweet() {
local tweet="$1"
local threshold=0.6
local class="MACHINE-LEARNING"
result=$(classifai "$tweet" -c 'PROGRAMMING' 'MACHINE-LEARNING' \
-m openrouter/openai/gpt-4o-mini \
| jq -r '.[0] | select(.classification == "'"$class"'" and .score > '"$threshold"') | .classification')
if [ -n "$result" ]; then
echo "Tweet classified as $class with high confidence. Executing demo..."
echo "Demo: This is a highly relevant tweet about $class"
else
echo "Tweet does not meet classification criteria."
fi
}
Classifai now supports reading from stdin and writing to stdout, making it easier to use in pipelines and shell scripts.
You can pipe content into classifai:
echo "This is a test sentence" | classifai -c 'positive' 'negative' 'neutral'
Or use heredoc for multiple lines:
cat <<EOF | classifai -c 'tech' 'sports' 'politics' -f simple
AI makes rapid progress
Football season starts soon
New tax policy announced
EOF
By default, classifai outputs JSON, which can be easily parsed by other tools:
echo "OpenAI releases GPT-4" | classifai -c 'tech' 'business' | jq '.[0].class'
For simpler output that's easier to use in shell scripts, use the -f simple
option:
echo "Breaking news: earthquake hits city" | classifai -c 'world' 'local' 'sports' -f simple | cut -f2
This will output only the classified class, making it easy to use in conditionals:
if [[ == "world" ]]; then
echo "This is world news"
fi
These enhancements make classifai more versatile and easier to integrate into complex data processing pipelines and shell scripts.
Classifai can also be used as a Python module for more advanced use cases. Here's an example of how to use it in your Python code:
from classifai import Classifai
# Initialize the Classifai model
model = Classifai(model_name='openrouter/openai/gpt-4-0314')
# Classify a single piece of content
content = "OpenAI releases GPT-4"
classes = ['tech', 'business']
result = model.classify(content, classes)
print(result)
This allows you to integrate Classifai's powerful classification capabilities directly into your Python applications.