forked from microsoft/torchgeo
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Adding Northeastern China Crop Map Dataset (microsoft#1666)
* Add files via upload Initial commit for adding Northeastern China Crop Map dataset * Added northeastern_china_cropmap (NCCM) definition to _init_.py * Update northeastern_china_cropmap.py * Added tests/data * added test_nccm.py * Updated datasets.rst and geo_datasets.csv * Latest changes to nccm.py * changes to data.py, nccm.py, test_nccm.py * Update test_nccm.py * Debug 1 * new changes * Latest update * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Fixed style errors * Fixed style errors * Fixed style errors * Update docs/api/datasets.rst Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Delete tests/data/nccm/.DS_Store * Update data.py * Update nccm.py * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update nccm.py * Update nccm.py * Resolved few comments * Fixed plotting functions, resolved comments * Fixed test cases * Fixed doc issue * Latest * Fixed doc * Latest * Latest * Latest * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Latest changes: removed years * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * Removed unnecessary variables and fixed download path * Latest changes * Latest changes * Latest changes * Fixed spacing * Latest changes * Update torchgeo/datasets/nccm.py Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update docs/api/geo_datasets.csv Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com> * Update nccm.py * Update data.py * Update nccm.py * Update torchgeo/datasets/nccm.py Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> * latest changes * Latest * Latest changes * Fixed torch.full() * removed print linke --------- Co-authored-by: shreya28 <“shreya28@illinois.edu”> Co-authored-by: Yi-Chia Chang <61452667+yichiac@users.noreply.github.com> Co-authored-by: Adam J. Stewart <ajstewart426@gmail.com>
- Loading branch information
1 parent
f1b751c
commit bc5cb4c
Showing
10 changed files
with
360 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -129,6 +129,11 @@ NAIP | |
|
||
.. autoclass:: NAIP | ||
|
||
NCCM | ||
^^^^ | ||
|
||
.. autoclass:: NCCM | ||
|
||
NLCD | ||
^^^^ | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
#!/usr/bin/env python3 | ||
|
||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import hashlib | ||
import os | ||
import shutil | ||
|
||
import numpy as np | ||
import rasterio | ||
from rasterio.crs import CRS | ||
from rasterio.transform import Affine | ||
|
||
SIZE = 32 | ||
|
||
np.random.seed(0) | ||
files = ["CDL2017_clip.tif", "CDL2018_clip1.tif", "CDL2019_clip.tif"] | ||
|
||
|
||
def create_file(path: str, dtype: str): | ||
"""Create the testing file.""" | ||
profile = { | ||
"driver": "GTiff", | ||
"dtype": dtype, | ||
"count": 1, | ||
"crs": CRS.from_epsg(4326), | ||
"transform": Affine( | ||
8.983152841195208e-05, | ||
0.0, | ||
115.483402043364, | ||
0.0, | ||
-8.983152841195208e-05, | ||
53.531397320113605, | ||
), | ||
"height": SIZE, | ||
"width": SIZE, | ||
"compress": "lzw", | ||
"predictor": 2, | ||
} | ||
|
||
allowed_values = [0, 1, 2, 3, 15] | ||
|
||
Z = np.random.choice(allowed_values, size=(SIZE, SIZE)) | ||
|
||
with rasterio.open(path, "w", **profile) as src: | ||
src.write(Z, 1) | ||
|
||
|
||
if __name__ == "__main__": | ||
dir = os.path.join(os.getcwd(), "13090442") | ||
|
||
if os.path.exists(dir) and os.path.isdir(dir): | ||
shutil.rmtree(dir) | ||
|
||
os.makedirs(dir, exist_ok=True) | ||
|
||
for file in files: | ||
create_file(os.path.join(dir, file), dtype="int8") | ||
|
||
# Compress data | ||
shutil.make_archive("13090442", "zip", ".", dir) | ||
|
||
# Compute checksums | ||
with open("13090442.zip", "rb") as f: | ||
md5 = hashlib.md5(f.read()).hexdigest() | ||
print(f"13090442.zip: {md5}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
import os | ||
import shutil | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import pytest | ||
import torch | ||
import torch.nn as nn | ||
from pytest import MonkeyPatch | ||
from rasterio.crs import CRS | ||
|
||
import torchgeo.datasets.utils | ||
from torchgeo.datasets import NCCM, BoundingBox, IntersectionDataset, UnionDataset | ||
from torchgeo.datasets.utils import DatasetNotFoundError | ||
|
||
|
||
def download_url(url: str, root: str, *args: str, **kwargs: str) -> None: | ||
shutil.copy(url, root) | ||
|
||
|
||
class TestNCCM: | ||
@pytest.fixture | ||
def dataset(self, monkeypatch: MonkeyPatch, tmp_path: Path) -> NCCM: | ||
monkeypatch.setattr(torchgeo.datasets.nccm, "download_url", download_url) | ||
url = os.path.join("tests", "data", "nccm", "13090442.zip") | ||
transforms = nn.Identity() | ||
monkeypatch.setattr(NCCM, "url", url) | ||
root = str(tmp_path) | ||
return NCCM(root, transforms=transforms, download=True, checksum=True) | ||
|
||
def test_getitem(self, dataset: NCCM) -> None: | ||
x = dataset[dataset.bounds] | ||
assert isinstance(x, dict) | ||
assert isinstance(x["crs"], CRS) | ||
assert isinstance(x["mask"], torch.Tensor) | ||
|
||
def test_and(self, dataset: NCCM) -> None: | ||
ds = dataset & dataset | ||
assert isinstance(ds, IntersectionDataset) | ||
|
||
def test_or(self, dataset: NCCM) -> None: | ||
ds = dataset | dataset | ||
assert isinstance(ds, UnionDataset) | ||
|
||
def test_already_extracted(self, dataset: NCCM) -> None: | ||
NCCM(dataset.paths, download=True) | ||
|
||
def test_already_downloaded(self, tmp_path: Path) -> None: | ||
pathname = os.path.join("tests", "data", "nccm", "13090442.zip") | ||
root = str(tmp_path) | ||
shutil.copy(pathname, root) | ||
NCCM(root) | ||
|
||
def test_plot(self, dataset: NCCM) -> None: | ||
query = dataset.bounds | ||
x = dataset[query] | ||
dataset.plot(x, suptitle="Test") | ||
plt.close() | ||
|
||
def test_plot_prediction(self, dataset: NCCM) -> None: | ||
query = dataset.bounds | ||
x = dataset[query] | ||
x["prediction"] = x["mask"].clone() | ||
dataset.plot(x, suptitle="Prediction") | ||
plt.close() | ||
|
||
def test_not_downloaded(self, tmp_path: Path) -> None: | ||
with pytest.raises(DatasetNotFoundError, match="Dataset not found"): | ||
NCCM(str(tmp_path)) | ||
|
||
def test_invalid_query(self, dataset: NCCM) -> None: | ||
query = BoundingBox(0, 0, 0, 0, 0, 0) | ||
with pytest.raises( | ||
IndexError, match="query: .* not found in index with bounds:" | ||
): | ||
dataset[query] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,206 @@ | ||
# Copyright (c) Microsoft Corporation. All rights reserved. | ||
# Licensed under the MIT License. | ||
|
||
"""Northeastern China Crop Map Dataset.""" | ||
|
||
import glob | ||
import os | ||
from collections.abc import Iterable | ||
from typing import Any, Callable, Optional, Union | ||
|
||
import matplotlib.pyplot as plt | ||
import torch | ||
from matplotlib.figure import Figure | ||
from rasterio.crs import CRS | ||
|
||
from .geo import RasterDataset | ||
from .utils import BoundingBox, DatasetNotFoundError, download_url, extract_archive | ||
|
||
|
||
class NCCM(RasterDataset): | ||
"""The Northeastern China Crop Map Dataset. | ||
Link: https://www.nature.com/articles/s41597-021-00827-9 | ||
This dataset produced annual 10-m crop maps of the | ||
major crops (maize, soybean, and rice) | ||
in Northeast China from 2017 to 2019, using hierarchial mapping strategies, | ||
random forest classifiers, interpolated and | ||
smoothed 10-day Sentinel-2 time series data and | ||
optimized features from spectral, temporal and | ||
textural characteristics of the land surface. | ||
The resultant maps have high overall accuracies (OA) | ||
based on ground truth data. The dataset contains information | ||
specific to three years: 2017, 2018, 2019. | ||
The dataset contains 5 classes: | ||
0. paddy rice | ||
1. maize | ||
2. soybean | ||
3. others crops and lands | ||
4. nodata | ||
Dataset format: | ||
* Three .TIF files containing the labels | ||
* JavaScript code to download images from the dataset. | ||
If you use this dataset in your research, please cite the following paper: | ||
* https://doi.org/10.1038/s41597-021-00827-9 | ||
.. versionadded:: 0.6 | ||
""" | ||
|
||
filename_regex = r"CDL(?P<year>\d{4})_clip" | ||
filename_glob = "CDL*.*" | ||
zipfile_glob = "13090442.zip" | ||
|
||
date_format = "%Y" | ||
is_image = False | ||
url = "https://figshare.com/ndownloader/articles/13090442/versions/1" | ||
md5 = "eae952f1b346d7e649d027e8139a76f5" | ||
|
||
cmap = { | ||
0: (0, 255, 0, 255), | ||
1: (255, 0, 0, 255), | ||
2: (255, 255, 0, 255), | ||
3: (128, 128, 128, 255), | ||
15: (255, 255, 255, 255), | ||
} | ||
|
||
def __init__( | ||
self, | ||
paths: Union[str, Iterable[str]] = "data", | ||
crs: Optional[CRS] = None, | ||
res: Optional[float] = None, | ||
transforms: Optional[Callable[[dict[str, Any]], dict[str, Any]]] = None, | ||
cache: bool = True, | ||
download: bool = False, | ||
checksum: bool = False, | ||
) -> None: | ||
"""Initialize a new dataset. | ||
Args: | ||
paths: one or more root directories to search or files to load | ||
crs: :term:`coordinate reference system (CRS)` to warp to | ||
(defaults to the CRS of the first file found) | ||
res: resolution of the dataset in units of CRS | ||
(defaults to the resolution of the first file found) | ||
transforms: a function/transform that takes an input sample | ||
and returns a transformed version | ||
cache: if True, cache file handle to speed up repeated sampling | ||
download: if True, download dataset and store it in the root directory | ||
checksum: if True, check the MD5 after downloading files (may be slow) | ||
Raises: | ||
DatasetNotFoundError: If dataset is not found and *download* is False. | ||
""" | ||
self.paths = paths | ||
self.download = download | ||
self.checksum = checksum | ||
self.ordinal_map = torch.full((max(self.cmap.keys()) + 1,), 4, dtype=self.dtype) | ||
self.ordinal_cmap = torch.zeros((5, 4), dtype=torch.uint8) | ||
|
||
self._verify() | ||
super().__init__(paths, crs, res, transforms=transforms, cache=cache) | ||
|
||
for i, (k, v) in enumerate(self.cmap.items()): | ||
self.ordinal_map[k] = i | ||
self.ordinal_cmap[i] = torch.tensor(v) | ||
|
||
def __getitem__(self, query: BoundingBox) -> dict[str, Any]: | ||
"""Retrieve mask and metadata indexed by query. | ||
Args: | ||
query: (minx, maxx, miny, maxy, mint, maxt) coordinates to index | ||
Returns: | ||
sample of mask and metadata at that index | ||
Raises: | ||
IndexError: if query is not found in the index | ||
""" | ||
sample = super().__getitem__(query) | ||
sample["mask"] = self.ordinal_map[sample["mask"]] | ||
return sample | ||
|
||
def _verify(self) -> None: | ||
"""Verify the integrity of the dataset.""" | ||
# Check if the extracted files already exist | ||
if self.files: | ||
return | ||
|
||
# Check if the zip file has already been downloaded | ||
assert isinstance(self.paths, str) | ||
pathname = os.path.join(self.paths, "**", self.zipfile_glob) | ||
if glob.glob(pathname, recursive=True): | ||
self._extract() | ||
return | ||
|
||
# Check if the user requested to download the dataset | ||
if not self.download: | ||
raise DatasetNotFoundError(self) | ||
|
||
# Download the dataset | ||
self._download() | ||
self._extract() | ||
|
||
def _download(self) -> None: | ||
"""Download the dataset.""" | ||
filename = "13090442.zip" | ||
download_url( | ||
self.url, self.paths, filename, md5=self.md5 if self.checksum else None | ||
) | ||
|
||
def _extract(self) -> None: | ||
"""Extract the dataset.""" | ||
assert isinstance(self.paths, str) | ||
pathname = os.path.join(self.paths, "**", self.zipfile_glob) | ||
extract_archive(glob.glob(pathname, recursive=True)[0], self.paths) | ||
|
||
def plot( | ||
self, | ||
sample: dict[str, Any], | ||
show_titles: bool = True, | ||
suptitle: Optional[str] = None, | ||
) -> Figure: | ||
"""Plot a sample from the dataset. | ||
Args: | ||
sample: a sample returned by :meth:`NCCM.__getitem__` | ||
show_titles: flag indicating whether to show titles above each panel | ||
suptitle: optional string to use as a suptitle | ||
Returns: | ||
a matplotlib Figure with the rendered sample | ||
""" | ||
mask = sample["mask"].squeeze() | ||
ncols = 1 | ||
|
||
showing_predictions = "prediction" in sample | ||
if showing_predictions: | ||
pred = sample["prediction"].squeeze() | ||
ncols = 2 | ||
|
||
fig, axs = plt.subplots( | ||
nrows=1, ncols=ncols, figsize=(ncols * 4, 4), squeeze=False | ||
) | ||
|
||
axs[0, 0].imshow(self.ordinal_cmap[mask], interpolation="none") | ||
axs[0, 0].axis("off") | ||
|
||
if show_titles: | ||
axs[0, 0].set_title("Mask") | ||
|
||
if showing_predictions: | ||
axs[0, 1].imshow(self.ordinal_cmap[pred], interpolation="none") | ||
axs[0, 1].axis("off") | ||
if show_titles: | ||
axs[0, 1].set_title("Prediction") | ||
|
||
if suptitle is not None: | ||
plt.suptitle(suptitle) | ||
|
||
return fig |