Skip to content

isayevlab/HPLC_anomaly

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HPLC Anomaly Detection in Cloud Laboratories

This repository contains code and models for automated anomaly detection in High-Performance Liquid Chromatography (HPLC) experiments conducted in cloud laboratories, as described in the manuscript "Machine Learning anomaly detection of automated HPLC experiments in the Cloud Laboratory."

Overview

This project implements a machine learning framework for detecting air bubble contamination in HPLC experiments - a common yet challenging issue that typically requires expert analytical chemists to identify. Using a 1D convolutional neural network, the system can automatically detect anomalies in HPLC experiments using pressure traces as input.

Dataset

  • 25,423 HPLC pressure traces across 6 parquet files (hplc_pre_tracks_batch_1-6_of_6.parquet)
  • 961 expert annotations in annotated_data.csv (700 air bubble cases, 261 normal)
  • 100 example traces in ExamplePreasureTraces_100_List[List[float]].pkl

Repository Structure

├── annotated_data.csv                              # Expert annotations (961 samples)
├── hplc_pre_tracks_batch_[1-6]_of_6.parquet        # Complete pressure trace dataset (25,423 traces)
├── ExamplePreasureTraces_100_List[List[float]].pkl # Example pressure traces
├── DeployedModel_epoch310-step19282.ckpt           # Trained model checkpoint
├── hparams.yaml                                    # Model hyperparameters
├── models.py                                       # Model definition
├── datamodule.py                                   # Data module for loading and preprocessing
├── Inference_Example.ipynb                         # Example notebook for inference
├── VisualizationEDA_example.ipynb                  # Exploratory data analysis
├── VisualizationEDA_example.html                   # EDA notebook (HTML export)
└── README.md                                       # This file

Usage

See Inference_Example.ipynb for a complete example of loading the trained model and running inference on pressure traces. The model outputs probabilities where values close to 1.0 indicate air bubble contamination.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published