tf.layers or slim is too sophisticated to build models efficiently. They all call tf.nn in low level.
We provide NNFunciton
wrapping tf.nn functions to simplify building neural network like pytorch, just claiming F = NNFunction(is_training, dtype, data_format)
.
We evaluate most image classification models using horovod + tf.estimator + tf.data, it stays state of art at most cases.
resnet and resNeXt models use preprocessing of RESNET (resnet ppr. as short) as default. (resize min 255,then crop 224 x 224)
(inference GPU: 1080Ti, without any optimization)
name | STA | top1 | top5 | inference speed(fp32) | inference speed(fp16) | loss | others |
---|---|---|---|---|---|---|---|
inception_v3 | 78.8 | 79.248 | 94.432 | 3.661 | 2.688 | 1.653 | 299,ls,e300 |
,224x224 | 77.158 | 93.496 | 2.251 | 1.818 | 224,e120,inception ppr. | ||
se_inception_v3 | 79.938 | 94.678 | 3.817 | 2.6400 | 1.661 | 299,ls,e200 | |
,e120 | 79.472 | 94.656 | 3.788 | 2.708 | 1.719 | ||
resnet_v1_50 | 76.174 | 92.988 | 2.276 | 1.411 | |||
mobilenet_v1_1.0 | 72.93 | 73.23 | 91.264 | 1.321 | 1.382 | ls,e200 | |
mobilenet_v2_1.4 | 75.0 | 74.536 | 91.966 | 2.111 | 1.391 | ls,e120 | |
,dw w/o relu6 | 74.928 | 92.192 | 2.049 | 1.358 | ls,e200 | ||
mobilenet_v2_1.0 | 71.506 | 90.26 | 1.637 | 1.518 | ls,e120 | ||
,dw w/o relu6 | 71.8 | 71.6 | 90.242 | 1.337 | 1.491 | ls,e200 | |
resnet_v1_101_D | 79.78 | 79.572 | 94.818 | 3.483 | 2.935 | 1.229 | resnet ppr |
,320x320 | 80.804 | 95.414 | 8.642 | 1.147 | 320,ls,e120,inception ppr. | ||
resNeXt_50_32x4d_D | 78.192 | 94.014 | 3.173 | 2.681 | 1.265 | ||
resNeXt_50_64x4d_D | 78.348 | 94.206 | 3.899 | 1.383 | |||
resNeXt_101_64x4d_D | 79.432 | 94.6 | 6.396 | 5.417 | 1.342 | ||
,320x320 | 80.304 | 95.24 | 13.988 | 1.302 | 320,ls,e120,fp16, bs32 | ||
resnet_v1_50_D | 78.342 | 94.16 | 2.520 | 2.117 | 1.251 | e120,resnet ppr. | |
,inceptio ppr. | 78.48 | 78.444 | 94.26 | 2.803 | 1.246 | e120,inception ppr. | |
,320x320 | 78.984 | 94.664 | 5.399 | 1.217 | e120, inception ppr. fp16 | ||
,se | 79.192 | 94.678 | 2.998 | 1.199 | e200, inception bbox ppr. fp32, ls | ||
shufflenet_v2_2.0 | 74.9 | 74.848 | 92.146 | 1.772 | 1.577 | 1.334 | e200, inception bbox ppr, fp32, ls |
,epoch120 | 74.018 | 91.738 | 1.567 | 1.393 | inception bbox ppr, fp32, ls |