Skip to content

The set of labs for Artificial Neural Networks course in NURE

Notifications You must be signed in to change notification settings

ivanchukhran/ANN-labs

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Artificial Neural Network Discipline Labs

Welcome to the repository for labs in the Artificial Neural Network discipline. In these labs, we explore fundamental concepts in neural networks, implementing key components from scratch to deepen our understanding. The labs are structured around the following topics:

  1. Activation Functions
  2. Optimizers
  3. Self Organizing Maps
  4. Hopfield Network

Labs Overview

  1. Activation Functions

Implement various activation functions from scratch. Explore the impact of different activation functions on network performance. Understand the role of activation functions in neural network architectures.

  1. Optimizers

Implement a simple autograd system from scratch. Develop custom optimization algorithms. Investigate the behavior of different optimizers during training.

  1. Self Organizing Maps

Build and analyze Self Organizing Maps (SOMs). Understand the principles of unsupervised learning in the context of SOMs. Visualize and interpret the learned representations.

  1. Hopfield Network

Implement the Hopfield Network for associative memory. Explore the capabilities and limitations of Hopfield Networks. Analyze the network's ability to recall stored patterns. Implementation Details For the first two labs (Activation Functions and Optimizers), a simple autograd system has been implemented from scratch. The core idea is based on a base interaction class called Tensor. This class can be manipulated through a variety of methods. Each method is represented by a specific class that tracks every change in memory. This ensures that every operation has a unique state and can be reproduced for backpropagation during the training process.

About

The set of labs for Artificial Neural Networks course in NURE

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published