forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Colab test notebooks for CPU, GPU, and TPU (jax-ml#3000)
- Loading branch information
Showing
3 changed files
with
736 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "JAX Colab CPU Test", | ||
"provenance": [], | ||
"collapsed_sections": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/google/jax/blob/master/tests/notebooks/colab_cpu.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "WkadOyTDCAWD", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# JAX Colab CPU Test\n", | ||
"\n", | ||
"This notebook is meant to be run in a [Colab](http://colab.research.google.com) CPU runtime as a basic check for JAX updates." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "_tKNrbqqBHwu", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 68 | ||
}, | ||
"outputId": "071fb360-ddf5-41ae-d772-acc08ec71d9b" | ||
}, | ||
"source": [ | ||
"import jax\n", | ||
"import jaxlib\n", | ||
"\n", | ||
"!cat /var/colab/hostname\n", | ||
"print(jax.__version__)\n", | ||
"print(jaxlib.__version__)" | ||
], | ||
"execution_count": 6, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"m-s-1p12yf76kgzz\n", | ||
"0.1.64\n", | ||
"0.1.45\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "oqEG21rADO1F", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"## Confirm Device" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "8BwzMYhKGQj6", | ||
"outputId": "f79a44e3-4303-494c-9288-a4e582bb34cb", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 68 | ||
} | ||
}, | ||
"source": [ | ||
"from jaxlib import xla_extension\n", | ||
"import jax\n", | ||
"key = jax.random.PRNGKey(1701)\n", | ||
"arr = jax.random.normal(key, (1000,))\n", | ||
"device = arr.device_buffer.device()\n", | ||
"print(f\"JAX device type: {device}\")\n", | ||
"assert isinstance(device, xla_extension.CpuDevice), \"unexpected JAX device type\"" | ||
], | ||
"execution_count": 2, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"/usr/local/lib/python3.6/dist-packages/jax/lib/xla_bridge.py:123: UserWarning: No GPU/TPU found, falling back to CPU.\n", | ||
" warnings.warn('No GPU/TPU found, falling back to CPU.')\n" | ||
], | ||
"name": "stderr" | ||
}, | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"JAX device type: cpu:0\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "z0FUY9yUC4k1", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"## Matrix Multiplication" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "eXn8GUl6CG5N", | ||
"outputId": "307aa669-76f1-4117-b62a-7acb2aee2c16", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 34 | ||
} | ||
}, | ||
"source": [ | ||
"import jax\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"# matrix multiplication on GPU\n", | ||
"key = jax.random.PRNGKey(0)\n", | ||
"x = jax.random.normal(key, (3000, 3000))\n", | ||
"result = jax.numpy.dot(x, x.T).mean()\n", | ||
"print(result)" | ||
], | ||
"execution_count": 3, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"1.0216691\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "0zTA2Q19DW4G", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"## Linear Algebra" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "uW9j84_UDYof", | ||
"colab_type": "code", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 51 | ||
}, | ||
"outputId": "3dd5d7c0-9d47-4be1-c6f7-068b432b69f7" | ||
}, | ||
"source": [ | ||
"import jax.numpy as jnp\n", | ||
"import jax.random as rand\n", | ||
"\n", | ||
"N = 10\n", | ||
"M = 20\n", | ||
"key = rand.PRNGKey(1701)\n", | ||
"\n", | ||
"X = rand.normal(key, (N, M))\n", | ||
"u, s, vt = jnp.linalg.svd(X)\n", | ||
"assert u.shape == (N, N)\n", | ||
"assert vt.shape == (M, M)\n", | ||
"print(s)" | ||
], | ||
"execution_count": 4, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"[6.9178133 5.9580317 5.581113 4.506963 4.111582 3.973543 3.3307292\n", | ||
" 2.8664916 1.8229378 1.5478933]\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "jCyKUn4-DCXn", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"## XLA Compilation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab_type": "code", | ||
"id": "2GOn_HhDPuEn", | ||
"outputId": "41a40dd9-3680-458d-cedd-81ebcc2ab06f", | ||
"colab": { | ||
"base_uri": "https://localhost:8080/", | ||
"height": 51 | ||
} | ||
}, | ||
"source": [ | ||
"@jax.jit\n", | ||
"def selu(x, alpha=1.67, lmbda=1.05):\n", | ||
" return lmbda * jax.numpy.where(x > 0, x, alpha * jax.numpy.exp(x) - alpha)\n", | ||
"x = jax.random.normal(key, (5000,))\n", | ||
"result = selu(x).block_until_ready()\n", | ||
"print(result)" | ||
], | ||
"execution_count": 5, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"[ 0.34676832 -0.7532232 1.7060695 ... 2.1208048 -0.42621925\n", | ||
" 0.13093236]\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
} | ||
] | ||
} |
Oops, something went wrong.