-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
#include <stdio.h> | ||
#include <stdlib.h> | ||
#include <vector> | ||
#include <iostream> | ||
#include <map> | ||
#include <set> | ||
#include <queue> | ||
#include <cmath> | ||
|
||
using namespace std; | ||
|
||
typedef struct Matrix | ||
{ | ||
long long ma[15][15]; | ||
}Matrix; | ||
|
||
Matrix A; // 矩阵A | ||
Matrix B; // 保存最后的结果 | ||
Matrix unit;// 单位矩阵,用于在下面的fun函数中 | ||
|
||
const int MOD = (1e9 + 7); | ||
int n = 2; | ||
// 两个矩阵相乘 | ||
Matrix Mul(Matrix m1, Matrix m2) | ||
{ | ||
Matrix c; | ||
for(int i=0; i<n; ++i) | ||
for(int j=0; j<n; ++j) | ||
{ | ||
c.ma[i][j] = 0; | ||
for(int k=0; k<n; ++k) | ||
{ | ||
c.ma[i][j] += m1.ma[i][k] % MOD * m2.ma[k][j] % MOD; | ||
c.ma[i][j] %= MOD; | ||
} | ||
} | ||
return c; | ||
} | ||
|
||
// 二分法求矩阵的幂 | ||
void fun(long long num) | ||
{ | ||
Matrix in = A; | ||
Matrix un = unit; | ||
|
||
while(num > 1) | ||
{ | ||
if(num & 1) | ||
{ | ||
--num; | ||
un = Mul(in, un); | ||
} | ||
else | ||
{ | ||
num >>= 1; | ||
in = Mul(in, in); | ||
|
||
} | ||
} | ||
B = Mul(in, un); | ||
} | ||
|
||
long long pm (long long x, long long y) { | ||
x = (x % MOD + MOD) % MOD; | ||
long long r = 1; | ||
while (y) { | ||
if (y & 1) (r *= x) %= MOD; | ||
(x *= x) %= MOD; | ||
y >>= 1; | ||
} | ||
return r; | ||
} | ||
|
||
int main() { | ||
unit.ma[0][0] = 1; | ||
unit.ma[1][1] = 1; | ||
int k1, k2; | ||
while (cin >> k1 >> k2) { | ||
|
||
long long x, y, Ax, Ay; | ||
cin >> x >> y >> Ax >> Ay; | ||
long long z; | ||
cin >> z; | ||
if (k1 == 0 && k2 == 0) { | ||
cout << 0 << endl; | ||
return 0; | ||
} | ||
if (k2 == 0) { | ||
if (x <= z) cout << Ax * pm (k1, z - x) % MOD << endl; | ||
else cout << Ax * pm (pm (k1, MOD - 2), x - z) % MOD << endl; | ||
return 0; | ||
} | ||
if (k1 == 0) { | ||
if ((x & 1) == (z & 1)) { | ||
if (x <= z) cout << Ax * pm (k2, (z - x) / 2) % MOD << endl; | ||
else cout << Ax * pm (pm (k2, MOD - 2), (x - z) / 2) % MOD << endl; | ||
} else { | ||
if (y <= z) cout << Ay * pm (k2, (z - y) / 2) % MOD << endl; | ||
else cout << Ay * pm (pm (k2, MOD - 2), (y - z) / 2) % MOD << endl; | ||
} | ||
return 0; | ||
} | ||
A.ma[0][0] = k1; | ||
A.ma[0][1] = k2; | ||
A.ma[1][0] = 1; | ||
A.ma[1][1] = 0; | ||
fun(x-2); | ||
long long X = B.ma[0][0]; | ||
long long Y = B.ma[0][1]; //Ax | ||
fun(y-2); | ||
long long XX = B.ma[0][0]; | ||
long long YY = B.ma[0][1]; //Bx | ||
fun(z-2); | ||
long long e = B.ma[0][0]; | ||
long long f = B.ma[0][1]; | ||
long long yyy = (Ax * XX%MOD - Ay * X %MOD+ MOD)%MOD * pm(Y * XX - X * YY, MOD-2)%MOD; | ||
long long xxx = (Ax * YY%MOD - Ay * Y%MOD + MOD)%MOD * pm(X * YY - Y * XX, MOD-2)%MOD; | ||
cout << (e * xxx%MOD + f * yyy%MOD) % MOD << endl; | ||
} | ||
} | ||
|
||
|