- PyTorch >= 1.0.0
- Python >= 3.6 (numpy, scipy, matplotlib, tqdm)
- OpenCV == 3.4.5
- Platform: Linux
git clone git@github.com:FunkyKoki/Look_At_Boundary_PyTorch.git
Program structure is as below:
.
├── dataset.py
├── evaluate.py
├── models
│ ├── __init__.py
│ ├── losses.py
│ └── models.py
├── README.md
├── train.py
├── utils
│ ├── args.py
│ ├── dataload.py
│ ├── dataset_info.py
│ ├── __init__.py
│ ├── pdb.py
│ ├── train_eval_utils.py
│ └── visual.py
└── weights
└── ckpts
This program support 4 popular face landmark datasets: 300W, AFLW, COFW, WFLW. The dataset file folder structure is as below:
.
├── 300W
│ ├── afw
│ ├── helen
│ │ ├── testset
│ │ └── trainset
│ ├── ibug
│ ├── lfpw
│ │ ├── testset
│ │ └── trainset
│ ├── test_imgs
│ └── testset
│ ├── 01_Indoor
│ └── 02_Outdoor
├── AFLW
│ ├── 0
│ ├── 2
│ └── 3
├── COFW
│ ├── test_imgs
│ └── train_imgs
└── WFLW
└── WFLW_images
├── 0−−Parade
├── 10−−People_Marching
├── 11−−Meeting
├── 12−−Group
├── 13−−Interview
├── 14−−Traffic
├── 15−−Stock_Market
├── 16−−Award_Ceremony
├── 17−−Ceremony
├── 18−−Concerts
├── 19−−Couple
├── 1−−Handshaking
├── 20−−Family_Group
├── 21−−Festival
├── 22−−Picnic
Tips: Pay attention to the test_imgs
folder and testset
folder in 300W dataset, the test_imgs
pics are human faces from COFW which are annotated with 68 landmarks, that's why it is put here. Some other things are written in readme.txt.
The annotation file can be download from https://pan.baidu.com/s/1hYFcz260IB0pMISbHbxoTg, the code is tuz9
, annotation format is [x1, y1, x2, y2, …, xn, yn, bboxleft, bboxtop, bboxright, bboxbottom, picH, picW, pic_route], which are coordinates, bounding box position, height and width of inital pic, and route of the pic in order.
WFLW training model can be download from https://pan.baidu.com/s/1tM3oJFUHmP4kJA7enXVLjA, the code is tbgi
and put at weights
folder, this model is trained with 900 epoch.
When evaluating, you can config the param in utils/args.py or just set the param by terminal, for example, if you want to evaluate at Pose Testset
normalized in the way of inter_ocular
:
python evaluate.py −−dataset WFLW −−split pose −−eval_epoch 900 −−norm_way inter_ocular
Config almost everything in utils/args or set them by terminal:
python train.py −−dataset WFLW −−split train −−loss_type L2
Tips: This program integrates the Wingloss
and Pose-based Date Balancing
, if you want to use them, just choose it ^_^.
Fuck every LICENSE.