Skip to content

Tensorflow implementation of Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks

Notifications You must be signed in to change notification settings

jaechanglim/molecule-generator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tensorflow implementation of Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks

https://arxiv.org/abs/1701.01329

  1. You need a smiles (smiles.txt) file for pretraining the model.
  2. Train the model using following command
python -u train.py --smiles_data=smiles.txt --vocab_from=smiles.txt --save_dir=./save --lr=1e-4
  1. Retrain the model using pretrained model with low learning rate
python -u train.py --smiles_data=egfr_smiles.txt --vocab_from=smiles.txt --save_dir=./save_egfr --lr=1e-5 --num_epochs=10  --pretrained=./save/model_30.ckpt-30
  1. Generate molecules. The result will be written in result.txt
python sample.py --vocab_from=smiles.txt --save_file=save_egfr/model_9.ckpt-9 --result_filename=result.txt

About

Tensorflow implementation of Generating Focussed Molecule Libraries for Drug Discovery with Recurrent Neural Networks

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages