This is an unofficial PyTorch implementation of Robust Federated Learning with Noisy Labels.
- python 3.8.8
- pytorch 1.8.0
- torchvision 0.9.0
Results can be reproduced running the following:
python3 main.py --gpu 0 --iid --dataset mnist --epochs 1000 --noise_type symmetric --noise_rate 0.2
python3 main.py --gpu 0 --iid --dataset mnist --epochs 1000 --noise_type pairflip --noise_rate 0.2
python3 main.py --gpu 0 --iid --dataset cifar --epochs 1000 --noise_type symmetric --noise_rate 0.2
python3 main.py --gpu 0 --iid --dataset cifar --epochs 1000 --noise_type pairflip --noise_rate 0.2
- Yang, S., Park, H., Byun, J., & Kim, C. (2020). Robust Federated Learning with Noisy Labels. arXiv preprint arXiv:2012.01700.
This codebase was adapted from https://github.com/shaoxiongji/federated-learning and https://github.com/bhanML/Co-teaching