Skip to content

Commit

Permalink
Added tasks 3248-3251
Browse files Browse the repository at this point in the history
  • Loading branch information
javadev authored Aug 13, 2024
1 parent 7f41811 commit 6835a51
Show file tree
Hide file tree
Showing 14 changed files with 508 additions and 0 deletions.
39 changes: 39 additions & 0 deletions src/main/java/g3201_3300/s3248_snake_in_matrix/Solution.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
package g3201_3300.s3248_snake_in_matrix;

// #Easy #Array #String #Simulation #2024_08_13_Time_2_ms_(98.05%)_Space_44.4_MB_(66.96%)

import java.util.List;

public class Solution {
public int finalPositionOfSnake(int n, List<String> commands) {
int x = 0;
int y = 0;
for (String command : commands) {
switch (command) {
case "UP":
if (x > 0) {
x--;
}
break;
case "DOWN":
if (x < n - 1) {
x++;
}
break;
case "LEFT":
if (y > 0) {
y--;
}
break;
case "RIGHT":
if (y < n - 1) {
y++;
}
break;
default:
break;
}
}
return (x * n) + y;
}
}
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
38 changes: 38 additions & 0 deletions src/main/java/g3201_3300/s3248_snake_in_matrix/readme.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
3248\. Snake in Matrix

Easy

There is a snake in an `n x n` matrix `grid` and can move in **four possible directions**. Each cell in the `grid` is identified by the position: `grid[i][j] = (i * n) + j`.

The snake starts at cell 0 and follows a sequence of commands.

You are given an integer `n` representing the size of the `grid` and an array of strings `commands` where each `command[i]` is either `"UP"`, `"RIGHT"`, `"DOWN"`, and `"LEFT"`. It's guaranteed that the snake will remain within the `grid` boundaries throughout its movement.

Return the position of the final cell where the snake ends up after executing `commands`.

**Example 1:**

**Input:** n = 2, commands = ["RIGHT","DOWN"]

**Output:** 3

**Explanation:**

![image](image01.png)

**Example 2:**

**Input:** n = 3, commands = ["DOWN","RIGHT","UP"]

**Output:** 1

**Explanation:**

![image](image02.png)

**Constraints:**

* `2 <= n <= 10`
* `1 <= commands.length <= 100`
* `commands` consists only of `"UP"`, `"RIGHT"`, `"DOWN"`, and `"LEFT"`.
* The input is generated such the snake will not move outside of the boundaries.
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
package g3201_3300.s3249_count_the_number_of_good_nodes;

// #Medium #Tree #Depth_First_Search #2024_08_13_Time_34_ms_(100.00%)_Space_113.9_MB_(90.70%)

import java.util.ArrayList;
import java.util.List;

public class Solution {
private int count = 0;

public int countGoodNodes(int[][] edges) {
int n = edges.length + 1;
TNode[] nodes = new TNode[n];
nodes[0] = new TNode(0);
for (int[] edge : edges) {
int a = edge[0];
int b = edge[1];
if (nodes[b] != null && nodes[a] == null) {
nodes[a] = new TNode(a);
nodes[b].children.add(nodes[a]);
} else {
if (nodes[a] == null) {
nodes[a] = new TNode(a);
}
if (nodes[b] == null) {
nodes[b] = new TNode(b);
}
nodes[a].children.add(nodes[b]);
}
}
sizeOfTree(nodes[0]);
return count;
}

private int sizeOfTree(TNode node) {
if (node.size > 0) {
return node.size;
}
List<TNode> children = node.children;
if (children.isEmpty()) {
count++;
node.size = 1;
return 1;
}
int size = sizeOfTree(children.get(0));
int sum = size;
boolean goodNode = true;
for (int i = 1; i < children.size(); ++i) {
TNode child = children.get(i);
if (size != sizeOfTree(child)) {
goodNode = false;
}
sum += sizeOfTree(child);
}
if (goodNode) {
count++;
}
sum++;
node.size = sum;
return sum;
}

private static class TNode {
int val;
int size;
List<TNode> children;

TNode(int val) {
this.val = val;
this.size = -1;
this.children = new ArrayList<>();
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
3249\. Count the Number of Good Nodes

Medium

There is an **undirected** tree with `n` nodes labeled from `0` to `n - 1`, and rooted at node `0`. You are given a 2D integer array `edges` of length `n - 1`, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree.

A node is **good** if all the subtrees rooted at its children have the same size.

Return the number of **good** nodes in the given tree.

A **subtree** of `treeName` is a tree consisting of a node in `treeName` and all of its descendants.

**Example 1:**

**Input:** edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]]

**Output:** 7

**Explanation:**

![](https://assets.leetcode.com/uploads/2024/05/26/tree1.png)

All of the nodes of the given tree are good.

**Example 2:**

**Input:** edges = [[0,1],[1,2],[2,3],[3,4],[0,5],[1,6],[2,7],[3,8]]

**Output:** 6

**Explanation:**

![](https://assets.leetcode.com/uploads/2024/06/03/screenshot-2024-06-03-193552.png)

There are 6 good nodes in the given tree. They are colored in the image above.

**Example 3:**

**Input:** edges = [[0,1],[1,2],[1,3],[1,4],[0,5],[5,6],[6,7],[7,8],[0,9],[9,10],[9,12],[10,11]]

**Output:** 12

**Explanation:**

![](https://assets.leetcode.com/uploads/2024/08/08/rob.jpg)

All nodes except node 9 are good.

**Constraints:**

* <code>2 <= n <= 10<sup>5</sup></code>
* `edges.length == n - 1`
* `edges[i].length == 2`
* <code>0 <= a<sub>i</sub>, b<sub>i</sub> < n</code>
* The input is generated such that `edges` represents a valid tree.
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
package g3201_3300.s3250_find_the_count_of_monotonic_pairs_i;

// #Hard #Array #Dynamic_Programming #Math #Prefix_Sum #Combinatorics
// #2024_08_13_Time_3_ms_(100.00%)_Space_44.7_MB_(99.34%)

public class Solution {
public int countOfPairs(int[] nums) {
int[] maxShift = new int[nums.length];
maxShift[0] = nums[0];
int currShift = 0;
for (int i = 1; i < nums.length; i++) {
currShift = Math.max(currShift, nums[i] - maxShift[i - 1]);
maxShift[i] = Math.min(maxShift[i - 1], nums[i] - currShift);
if (maxShift[i] < 0) {
return 0;
}
}
int[][] cases = getAllCases(nums, maxShift);
return cases[nums.length - 1][maxShift[nums.length - 1]];
}

private int[][] getAllCases(int[] nums, int[] maxShift) {
int[] currCases;
int[][] cases = new int[nums.length][];
cases[0] = new int[maxShift[0] + 1];
for (int i = 0; i < cases[0].length; i++) {
cases[0][i] = i + 1;
}
for (int i = 1; i < nums.length; i++) {
currCases = new int[maxShift[i] + 1];
currCases[0] = 1;
for (int j = 1; j < currCases.length; j++) {
int prevCases =
j < cases[i - 1].length
? cases[i - 1][j]
: cases[i - 1][cases[i - 1].length - 1];
currCases[j] = (currCases[j - 1] + prevCases) % (1_000_000_000 + 7);
}
cases[i] = currCases;
}
return cases;
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
3250\. Find the Count of Monotonic Pairs I

Hard

You are given an array of **positive** integers `nums` of length `n`.

We call a pair of **non-negative** integer arrays `(arr1, arr2)` **monotonic** if:

* The lengths of both arrays are `n`.
* `arr1` is monotonically **non-decreasing**, in other words, `arr1[0] <= arr1[1] <= ... <= arr1[n - 1]`.
* `arr2` is monotonically **non-increasing**, in other words, `arr2[0] >= arr2[1] >= ... >= arr2[n - 1]`.
* `arr1[i] + arr2[i] == nums[i]` for all `0 <= i <= n - 1`.

Return the count of **monotonic** pairs.

Since the answer may be very large, return it **modulo** <code>10<sup>9</sup> + 7</code>.

**Example 1:**

**Input:** nums = [2,3,2]

**Output:** 4

**Explanation:**

The good pairs are:

1. `([0, 1, 1], [2, 2, 1])`
2. `([0, 1, 2], [2, 2, 0])`
3. `([0, 2, 2], [2, 1, 0])`
4. `([1, 2, 2], [1, 1, 0])`

**Example 2:**

**Input:** nums = [5,5,5,5]

**Output:** 126

**Constraints:**

* `1 <= n == nums.length <= 2000`
* `1 <= nums[i] <= 50`
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
package g3201_3300.s3251_find_the_count_of_monotonic_pairs_ii;

// #Hard #Array #Dynamic_Programming #Math #Prefix_Sum #Combinatorics
// #2024_08_13_Time_24_ms_(100.00%)_Space_44.7_MB_(97.70%)

import java.util.Arrays;

public class Solution {
private static final int MOD = 1000000007;

public int countOfPairs(int[] nums) {
int prefixZeros = 0;
int n = nums.length;
// Calculate prefix zeros
for (int i = 1; i < n; i++) {
prefixZeros += Math.max(nums[i] - nums[i - 1], 0);
}
int row = n + 1;
int col = nums[n - 1] + 1 - prefixZeros;
if (col <= 0) {
return 0;
}
// Initialize dp array
int[] dp = new int[col];
Arrays.fill(dp, 1);
// Fill dp array
for (int r = 1; r < row; r++) {
for (int c = 1; c < col; c++) {
dp[c] = (dp[c] + dp[c - 1]) % MOD;
}
}
return dp[col - 1];
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
3251\. Find the Count of Monotonic Pairs II

Hard

You are given an array of **positive** integers `nums` of length `n`.

We call a pair of **non-negative** integer arrays `(arr1, arr2)` **monotonic** if:

* The lengths of both arrays are `n`.
* `arr1` is monotonically **non-decreasing**, in other words, `arr1[0] <= arr1[1] <= ... <= arr1[n - 1]`.
* `arr2` is monotonically **non-increasing**, in other words, `arr2[0] >= arr2[1] >= ... >= arr2[n - 1]`.
* `arr1[i] + arr2[i] == nums[i]` for all `0 <= i <= n - 1`.

Return the count of **monotonic** pairs.

Since the answer may be very large, return it **modulo** <code>10<sup>9</sup> + 7</code>.

**Example 1:**

**Input:** nums = [2,3,2]

**Output:** 4

**Explanation:**

The good pairs are:

1. `([0, 1, 1], [2, 2, 1])`
2. `([0, 1, 2], [2, 2, 0])`
3. `([0, 2, 2], [2, 1, 0])`
4. `([1, 2, 2], [1, 1, 0])`

**Example 2:**

**Input:** nums = [5,5,5,5]

**Output:** 126

**Constraints:**

* `1 <= n == nums.length <= 2000`
* `1 <= nums[i] <= 1000`
Loading

0 comments on commit 6835a51

Please sign in to comment.