Skip to content

javiber/scrat

Scrat

Persistent Caching of Expensive Function Results

🐿️

Get Started

  1. Install with pip install scrat
  2. Initialize stash scrat init
  3. Start saving time:
import scrat
import time

@scrat.stash()
def expensive_function(param_1):
    time.sleep(3)
    return param_1

expensive_function(1)  # <- function called
expensive_function(1)  # <- function not called the result is recovered from stash
expensive_function(2)  # <- function called again beacuse the parameters changed

Features

  • Seamlessly stores the results of expensive functions to disk for future reuse.
  • Automatically re-evaluates the function if the parameters or function code have changed, ensuring up-to-date results.
  • Saves any result using the pickle.
  • Improved storage of pandas DataFrames, Series, and Numpy arrays.
  • Customizable support for alternative serializers.
  • Flexible parameter hashing mechanism to efficiently handle any parameter type.
  • Command-line interface (CLI) for convenient control and management of the caching functionality.

Similar Projects

lru_cache

Great and fast memoize provided by the standard library functools, unfurtunately results are stored in memory so they can't be reused in different runs.

cachetools

Provides alternatives to lru_cache but it also works in-memory.

Joblib

Joblib is a stablished library that provides great functionality for parallelization and caching. The Memory module provides an excelent alternative to Scrat, but it does have some limitations:

  • Hard to avoid using pickle
  • Lack of options to control the cache size and policies
  • Lack of tools to inspect and cleanup the cache

These are the problems that scrat aims to improve, however, I'd recommend using Joblib in production since it's much more mature than Scrat at the moment.

Concepts

  • Scrat is a famous pre-historic squirrel with some bad luck
  • Stash is composed of a folder where results are saved and a database to index them
  • A Nut is one of the entries in the database
  • The Squirrel is in charge of fetching and stashing the Nuts
  • Serializer dumps results to files and load them back to memory
  • Hasher creates unique hashes for a parameter value
  • HashManager coordinates hashes of all arguments and functon code

Development Setup

  1. Clone this repo
  2. Install pyenv.
  3. Install the python version used for development running pyenv install in the root of this repository.
  4. Install poetry. Version 1.5.1 is recommended.
  5. Run this command to make sure poetry uses the right python version poetry env use $(which python)
  6. Install project and dependencies with poetry install
  7. Run tests with poetry run pytest or activate the virtualenv with poetry shell and then run pytest