Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add implementation of np.searchsorted #2938

Merged
merged 3 commits into from
May 6, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/jax.numpy.rst
Original file line number Diff line number Diff line change
Expand Up @@ -223,6 +223,7 @@ Not every function in NumPy is implemented; contributions are welcome!
rot90
round
row_stack
searchsorted
select
sign
signbit
Expand Down
35 changes: 35 additions & 0 deletions jax/numpy/lax_numpy.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
import collections
from collections.abc import Sequence
import itertools
import operator
import os
import re
import string
Expand All @@ -40,6 +41,7 @@
import opt_einsum

from jax import jit, device_put, custom_jvp
from .vectorize import vectorize
from ._util import _wraps
from .. import core
from .. import dtypes
Expand Down Expand Up @@ -3753,6 +3755,39 @@ def _quantile(a, q, axis, interpolation, keepdims):
return lax.convert_element_type(result, a.dtype)


@partial(jit, static_argnums=2)
@partial(vectorize, excluded={0, 2})
def _searchsorted(a, v, side):
op = operator.le if side == 'left' else operator.lt

def cond_fun(state):
start, stop = state
return stop - start > 1

def body_fun(state):
start, stop = state
mid = (start + stop) // 2
go_left = op(v, a[mid])
return where(go_left, start, mid), where(go_left, mid, stop)

result = lax.while_loop(cond_fun, body_fun, (0, a.shape[0]))
return where(op(v, a[0]), 0, result[1])


@_wraps(onp.searchsorted)
def searchsorted(a, v, side='left', sorter=None):
assert side in ['left', 'right']
if sorter is not None:
raise NotImplementedError("sorter is not implemented")
a = asarray(a)
v = asarray(v)
if ndim(a) != 1:
raise ValueError("a should be 1-dimensional")
if size(a) == 0:
return zeros_like(v, dtype=int)
return _searchsorted(a, v, side)


@_wraps(onp.percentile)
def percentile(a, q, axis=None, out=None, overwrite_input=False,
interpolation="linear", keepdims=False):
Expand Down
20 changes: 20 additions & 0 deletions tests/lax_numpy_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -1411,6 +1411,26 @@ def onp_fun(arg):
self._CheckAgainstNumpy(onp_fun, jnp_fun, args_maker, check_dtypes=True)
self._CompileAndCheck(jnp_fun, args_maker, check_dtypes=True)

@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_a={}_v={}_side={}".format(
jtu.format_shape_dtype_string(ashape, dtype),
jtu.format_shape_dtype_string(vshape, dtype),
side), "ashape": ashape, "vshape": vshape, "side": side,
"dtype": dtype, "rng_factory": rng_factory}
for ashape in [(20,)]
for vshape in [(), (5,), (5, 5)]
for side in ['left', 'right']
for dtype in default_dtypes
for rng_factory in [jtu.rand_default]
))
def testSearchsorted(self, ashape, vshape, side, dtype, rng_factory):
rng = rng_factory(self.rng())
args_maker = lambda: [jnp.sort(rng(ashape, dtype)), rng(vshape, dtype)]
onp_fun = lambda a, v: onp.searchsorted(a, v, side=side)
jnp_fun = lambda a, v: jnp.searchsorted(a, v, side=side)
self._CheckAgainstNumpy(onp_fun, jnp_fun, args_maker, check_dtypes=True)
self._CompileAndCheck(jnp_fun, args_maker, check_dtypes=True)

@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_{}_axis={}".format(
jtu.format_test_name_suffix("", [shape] * len(dtypes), dtypes), axis),
Expand Down