This is a pytorch implementation for our ICCV 2023 paper "MiniROAD: Minimal RNN Framework for Online Action Detection
".
To prepare the features and targets by yourself, please refer to LSTR. You can also directly download the pre-extracted features and targets from TeSTra
.
Download the officially available pre-extracted features from FineAction
. As mentioned in the paper, the temporal dimensions have been linearly interpolated by a factor of four as the officially available feature is too condensed (16 frames being converted into one feature).
-
If you want to use our dataloaders, please make sure to put the files as the following structure:
-
THUMOS'14 dataset:
$YOUR_PATH_TO_THUMOS_DATASET ├── rgb_FEATURETYPE/ | ├── video_validation_0000051.npy │ ├── ... ├── flow_FEATURETYPE/ | ├── video_validation_0000051.npy | ├── ... ├── target_perframe/ | ├── video_validation_0000051.npy (of size L x 22) | ├── ...
-
TVSeries dataset:
$YOUR_PATH_TO_TVSERIES_DATASET ├── rgb_FEATURETYPE/ | ├── Breaking_Bad_ep1.npy │ ├── ... ├── flow_FEATURETYPE/ | ├── Breaking_Bad_ep1.npy | ├── ... ├── target_perframe/ | ├── Breaking_Bad_ep1.npy (of size L x 31) | ├── ...
-
FineAction dataset:
$YOUR_PATH_TO_FINEACTION_DATASET ├── rgb_kinetics_i3d/ | ├── v_00008645.npy (of size L x 2048) │ ├── ... ├── flow_kinetics_i3d/ | ├── v_00008645.npy (of size L x 2048) | ├── ... ├── target_perframe/ | ├── v_00008645.npy (of size L x 107) | ├── ...
For appropriate FEATURETYPE, please refer to (datasets/dataset.py)
-
-
Create softlinks of datasets:
cd MiniROAD ln -s $YOUR_PATH_TO_THUMOS_DATASET data/THUMOS ln -s $YOUR_PATH_TO_TVSERIES_DATASET data/TVSERIES ln -s $YOUR_PATH_TO_FINEACTION_DATASET data/FINEACTION
```
cd MiniROAD
python main.py --config $PATH_TO_CONFIG_FILE
```
```
cd MiniROAD
python main.py --config $PATH_TO_CONFIG_FILE --eval $PATH_TO_CHECKPOINT
```
method | feature | mAP (%) | config | checkpoint |
---|---|---|---|---|
MiniROAD | kinetics | 71.8 | yaml | Download |
MiniROAD | nv_kinetics | 68.4 | yaml | Download |
method | feature | mAP (%) | config | checkpoint |
---|---|---|---|---|
MiniROAD | kinetics | 37.1 | yaml | Download |
method | feature | mcAP (%) | config | checkpoint |
---|---|---|---|---|
MiniROAD | kinetics | 89.6 | yaml | Download |
If you are using the data/code/model provided here in a publication, please cite our paper:
@inproceedings{miniroad,
title={MiniROAD: Minimal RNN Framework for Online Action Detection},
author={An, Joungbin and Kang, Hyolim and Han, Su Ho and Yang, Ming-Hsuan and Kim, Seon Joo},
booktitle={International Conference on Computer Vision (ICCV)},
year={2023}
}
This project is licensed under the Apache-2.0 License.
Many of the codebase is from LSTR.