Skip to content

jdkern11/radar_plot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Radar plot

This package creates radar plots. It can generate typical radar plots and plot ranges of values.

example 0

Data formatting

Data you want to plot must have a tidy format. For instance, if I wanted to plot three properties (let's say prop1, prop2, and prop3 with values 12, 3.5, and 42 respectively) then you should load a csv file into a pandas dataframe that has the following format:

property value item
prop1 12.0 item1
prop2 3.5 item1
prop3 42 item1

If you wanted to plot several items (e.g., item1, item2, and item3) with different values for the properties, then format the data like this:

property value item
prop1 12.0 item1
prop2 3.5 item1
prop3 42 item1
prop1 14.0 item2
prop2 4.0 item2
prop3 36 item2
prop1 15 item3
prop2 2 item3
prop3 40 item3

Basic Usage

Following that formatting scheme, you can plot the data as follows

import pandas as pd
import matplotlib.pyplot as plt
import radarplt

# see tables above
df = pd.read_csv('example_data.csv')
fig, ax = radarplt.plot(
    df,
    label_column="property",
    value_column="value",
    hue_column="item",
)
legend = ax.legend(loc=(0.9, 0.95))
plt.tight_layout()
plt.show()

Resulting in the following image example 1 plotted

Additional lines are plotted at the .25, .50, and .75 marks on the image. The value at the .25 and .75 line for each property is labeled and values increase/decrease linearly between these points. For instance, the 0.5 mark for property 2 would be 4, the 1 mark would be 6 and the 0 mark would be 2.

Changing Ranges

Let's say you don't like that the prop2 ranges from 1 to 6. To change these value ranges create a dictionary of the ranges you want for each property and pass it to the function via the value_ranges parameter. For instance:

import pandas as pd
import matplotlib.pyplot as plt
import radarplt

value_ranges = {
  "prop1": [0, 20],
  "prop2": [0, 5],
  "prop3": [0, 50],
}

# see tables above
df = pd.read_csv('example_data.csv')
fig, ax = radarplt.plot(
    df,
    label_column="property",
    value_column="value",
    hue_column="item",
    value_ranges=value_ranges,
)
legend = ax.legend(loc=(0.9, 0.95))
plt.tight_layout()
plt.show()

Resulting in the following image example 2 plotted

Changing labels

If you don't want the labels for the properties to be the property names, you can change those as well with the plot_labels parameter.

import pandas as pd
import matplotlib.pyplot as plt
import radarplt

value_ranges = {
  "prop1": [0, 20],
  "prop2": [0, 5],
  "prop3": [0, 50],
}

plot_labels = {
  "prop1": "$\sigma^{2}$",
  "prop2": "Property 2 (seconds)",
  "prop3": "p3"
}

# see tables above
df = pd.read_csv('example_data.csv')
fig, ax = radarplt.plot(
    df,
    label_column="property",
    value_column="value",
    hue_column="item",
    value_ranges=value_ranges,
    plot_labels=plot_labels,
    # can change fontsize of the numbers in the plot
    tick_fontsize=12
)
legend = ax.legend(loc=(0.9, 0.95))
plt.tight_layout()
plt.show()

Resulting in the following image example 3 plotted

Plotting target ranges

If you want to see if your items' values fall within a certain range, you can add those ranges as well

import pandas as pd
import matplotlib.pyplot as plt
import radarplt

target_ranges = {
  "prop1": [10, 20],
  "prop2": [0, 2],
  "prop3": [25, 35]
}

value_ranges = {
  "prop1": [0, 20],
  "prop2": [0, 5],
  "prop3": [0, 50],
}

plot_labels = {
  "prop1": "$\sigma^{2}$",
  "prop2": "Property 2 (seconds)",
  "prop3": "p3"
}

# see tables above
df = pd.read_csv('example_data.csv')
fig, ax = radarplt.plot(
    df,
    label_column="property",
    value_column="value",
    hue_column="item",
    value_ranges=value_ranges,
    plot_labels=plot_labels,
    target_ranges=target_ranges
    # note, you can also change the radar plot target linewidth
    target_linewidth=2
)
legend = ax.legend(loc=(0.9, 0.95))
plt.tight_layout()
plt.show()

Resulting in the following image example 4 plotted

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages