Utility library for running programs and analysing their results.
Useful for convergence testing. Integrates well with Fortran programs.
Documentation: http://runana.readthedocs.org/en/latest/
runana
can be installed from pypi:
$ pip install runana
The latest version of runana
can be installed from source:
$ git clone https://github.com/jenssss/runana.git $ cd runana $ python setup.py install
Users without install privileges can append the --user
flag to
setup.py
:
$ python setup.py install --user
A number of examples are included in the examples
directory of the
source code. The subfolder f90nml
uses configuration files in the
fortran namelist format, while upname
uses a configuration name format
in which the names and values of variables are given on consequtive
lines with entries seperated by white space.
Here follows one of the examples from the f90nml
folder. A simple
program for performing a numerical integration is given in
examples/f90nml/integrate_test.py
. The main content of this file is:
#!/usr/bin/env python from sys import argv import numpy as np import f90nml config = f90nml.read(argv[1]) npoints = config['nlIntegrate']['npoints'] x = np.linspace(0, 2, npoints) y = 10*x**2 I = np.trapz(y, x) print('Integral of 10*x**2 from 0 to 2: ', I)
The program can be configured through a namelist configuration, which
should be given as the first argument when calling the program
./intergrate_test.py config.nml
. An example of such a configuration
is located at examples/f90nml/config.nml
and contains entries of the
form:
&nlGroup var = 1 &end &nlIntegrate npoints = 10 &end
We want to run this program for a number of different values of the
npoints
parameter, and compare the results. For this we can use
runana
. The file examples/f90nml/run_integrate.py
contains a
script showing how this can be run:
from os import path, getcwd from runana.run import execute, print_time, generate_list def setup_programs(): programs = ['integrate_test.py',] programs = [path.join(getcwd(), program) for program in programs] return programs def setup_replacers(): nvar_values = 10 chain_iters = {('nlIntegrate', 'npoints'): generate_list( start=10, incr=10, incr_func='add', nvalues=nvar_values), } return chain_iters input_file = 'config.nml' chain_iters = setup_replacers() scratch_base = path.expanduser('~/test_run/runana/integrate_test') programs = setup_programs() print('Running in ', scratch_base) with print_time(): execute(programs, input_file, scratch_base, chain_iters=chain_iters)
Running this script will run the integration program with 10 values of
the npoints
parameter in increments of 10 starting from 10. The
results of the calculations will be stored in
~/test_run/runana/integrate_test
, specified in the scratch_base
variable. For each parameter, a seperate run of the program will be
performed, and the results stored in separate subdirectories of
~/test_run/runana/integrate_test
. This script can be run by running
python run_integrate.py
in the examples/f90nml/
directory.
Finally, the results can be analyzed using the script in
examples/f90nml/analyse_integrate.py
, which contains:
from os import path from runana import analyse from runana import analyse_pandas from runana import read_numbers workdir = path.expanduser('~/test_run/runana/integrate_test') params_to_dirs = analyse.read_input_files(workdir) params_to_dirs.diff() panda_data = analyse_pandas.make_a_seq_panda(params_to_dirs) read_var = analyse.make_collector_function( workdir, read_numbers.read_last_number_from_file, fname="integrate_test.py.stdout", pattern="Integral", ) panda_var = panda_data.applymap(read_var) print("Values of integral") print(panda_var) panda_conv = panda_var.calc_convergence() print("Estimated difference between current and fully converged value") print(panda_conv) param_panda = panda_data.applymap( analyse_pandas.return_dict_element(params_to_dirs) ) panda_var.plot_("plot_test_integral_var.pdf", param_panda=param_panda) panda_conv.plot_("plot_test_integral_conv.pdf", logy=True, param_panda=param_panda)
Running this script should print out:
Values of integral: 0 NumParam NumParamValue npoints 10.0 26.831276 20.0 26.703601 30.0 26.682521 40.0 26.675433 50.0 26.672220 60.0 26.670497 70.0 26.669467 80.0 26.668803 90.0 26.668350 100.0 26.668027 Estimated difference between current and fully converged value: 0_conv NumParam NumParamValue npoints 10.0 NaN 20.0 0.009562 30.0 0.002370 40.0 0.001063 50.0 0.000602 60.0 0.000388 70.0 0.000270 80.0 0.000199 90.0 0.000153 100.0 0.000121
The script collects the values calculated by the integration program and
puts them into a pandas DataFrame
, indexed by the value of the
varying numerical parameter. It also calculates an estimate for how well
converged the calculation is. Finally the script plots these values to the files
plot_test_integral_var.pdf
and plot_test_integral_conv.pdf
.