This repository contains a tensorflow implementation for the paper "Learning Descriptor Networks for 3D Shape Synthesis and Analysis ". (http://www.stat.ucla.edu/~jxie/3DDescriptorNet/3DDescriptorNet.html)
- Python 2.7 or Python 3.3+
- Tensorflow r1.3+
- Install required Python libraries
pip install numpy scipy
-
Clone this repo:
git clone https://github.com/jianwen-xie/3DDescriptorNet.git cd 3DDescriptorNet
-
Download volumetric data and save it to
./data
directory. The dataset contains 10 categories of voxelizations of ModelNet10. -
Download pretrained models and save it to the cloned directory.
-
Train the synthesis model on night stand category:
python train.py --category night_stand --data_dir ./data/volumetric_data/ModelNet10 --output_dir ./output
-
Visualize the generated results using the MATLAB code in
visualization/visualize.m
, e.g.addpath('visualization') visualize('./output/night_stand/synthesis', 'sample2990.mat')
-
Evaluate synthesized results using the evaluation code in
./evaluation
-
You can download our synthesized results and test on it.
-
Train the recovery model on sofa category:
python rec_exp.py --category sofa \ --num_epochs 1000 \ --batch_size 50 \ --step_size 0.07 \ --sample_steps 90
-
Test the recovery model:
- Download the incomplete data and save it to
./data
directory. For each category involumetric_data
, the incomplete data contains: 1)incomplete_test.mat
: 70% randomly corrupted testing data 2)masks.mat
: The mask to corrupt the testing data. 3.original_test.mat
: original testing data for comparison. - You can download our pretrained model to test recovery.
- Run recovery on the corrupted data
python rec_exp.py --test --category sofa \ --ckpt pretrained_model/recovery/sofa/sofa.ckpt \ --incomp_data_path ./data/incomplete_data \ --batch_size 50 \ --step_size 0.07 \ --sample_steps 90
- Download the incomplete data and save it to
-
Train the super resolution model on toilet category:
python sr_exp.py --category toilet \ --cube_len 64 \ --scale 4 \ --num_epochs 500 \ --batch_size 50 \ --step_size 0.01 \ --sample_steps 10
-
Test the super resolution model:
python rec_exp.py --test --category toilet \ --ckpt ./output/toilet/checkpoints/model.ckpt-490 \ --cube_len 64 \ --scale 4 \ --batch_size 50 \ --step_size 0.01 \ --sample_steps 10
Method | Classification |
---|---|
Geometry Image | 88.4% |
PANORAMA-NN | 91.1% |
ECC | 90.0% |
3D ShapeNets | 83.5% |
DeepPana | 85.5% |
SPH | 79.8% |
VConv-DAE | 80.5% |
3D-GAN | 91.0% |
3D DescriptorNet (ours) | 92.4% |
-
Train Classification using Logistic Regression (pretrained model):
python train_classification.py --classifier_type logistic --ckpt pretrained_models/classification/model.ckpt
-
Train Classification using SVM:
python train_classification.py --classifier_type svm --ckpt pretrained_models/classification/model.ckpt
@inproceedings{3DDesNet,
title={Learning Descriptor Networks for 3D Shape Synthesis and Analysis},
author={Xie, Jianwen and Zheng, Zilong and Gao, Ruiqi and Wang, Wenguan and Zhu Song-Chun and Wu, Ying Nian},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018}
}
For any questions, please contact Jianwen Xie (jianwen@ucla.edu) and Zilong Zheng (zilongzheng0318@ucla.edu).