Skip to content

Python client for Milvus distributed high-performance vector database system.

License

Notifications You must be signed in to change notification settings

jielinxu/pymilvus

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

90 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Milvus Python SDK

Using Milvus python sdk for Milvus

Download

Pymilvus only supports python >= 3.4, is fully tested under 3.4, 3.5, 3.6.

Python 3.7 can work, but not fully tested yet.

Pymilvus can be downloaded using pip. If no use, try pip3

$ pip install pymilvus

Upgrade to newest version

$ pip install --upgrade pymilvus

Import

from milvus import Milvus, Prepare, IndexType, Status

Getting started

Initial a Milvus instance and connect to the sever

>>> milvus = Milvus()

>>> milvus.connect(host='SERVER-HOST', port='SERVER-PORT')
Status(code=0, message="Success")

Once successfully connected, you can get the version of server

>>> milvus.server_version()
0.0.0  # this is example version, the real version may vary

Add a new table

First using Prepare to create param

>>> param = Prepare.table_schema(table_name='test01', dimension=256, index_type=IndexType.FLAT,
                                    store_raw_vector=False)

Then create table

>>> milvus.create_table(param)
Status(message='Table test01 created!', code=0)

Describe the table we just created

>>> milvus.describe_table('test01')
(Status(code=0, message='Success!'), TableSchema(table_name='test01',dimension=256, index_type=1, store_raw_vector=False))

Add vectors into table test01

First Prepare binary vectors of 256-dimension.

  • Note that random and pprint we used here is for creating fake vectors data and pretty print, you may not need them in your project
>>> import random
>>> from pprint import pprint

>>> dim = 256  # Dimension of the vector

# Initialize 20 vectors of 256-dimension
>>> fake_vectors = [[random.random() for _ in range(dim)] for _ in range(20)]
>>> vectors = Prepare.records(fake_vectors)  # This will transfer fake_vector to binary data

Then add vectors into table test01

>>> status, ids = milvus.add_vectors(table_name='test01', records=vectors)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(ids) # List of ids returned
23455321135511233
12245748929023489
...

Search vectors

# prepare 5 vectors of 256-dimension
>>> q_records = Prepare.records([random.random() for _ in range(dim)] for _ in range(5)]

Then get results

>>> status, results = milvus.search_vectors(table_name='test01', query_records=q_records, top_k=10)
>>> print(status)
Status(code=0, message='Success')
>>> pprint(results) # Searched top_k vectors

Disconnect with the server

>>> milvus.disconnect()
Status(code=0, message='Success')

Example python

There are some small examples in examples/, you can find more guide there.

Build docs

$ sphinx-build -b html doc/en/ doc/en/build

If you encounter any problems or bugs, please add new issues

About

Python client for Milvus distributed high-performance vector database system.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%