Skip to content

Commit

Permalink
Create lightrag_api_oracle_demo..py
Browse files Browse the repository at this point in the history
  • Loading branch information
jin38324 committed Nov 11, 2024
1 parent ff0c763 commit c89bf79
Showing 1 changed file with 232 additions and 0 deletions.
232 changes: 232 additions & 0 deletions examples/lightrag_api_oracle_demo..py
Original file line number Diff line number Diff line change
@@ -0,0 +1,232 @@

from fastapi import FastAPI, HTTPException, File, UploadFile
from contextlib import asynccontextmanager
from pydantic import BaseModel
from typing import Optional

import sys, os
print(os.getcwd())
from pathlib import Path
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))

import asyncio
import nest_asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
from datetime import datetime

from lightrag.kg.oracle_impl import OracleDB


# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()

DEFAULT_RAG_DIR = "index_default"


# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"

# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")
LLM_MODEL = os.environ.get("LLM_MODEL", "cohere.command-r-plus")
print(f"LLM_MODEL: {LLM_MODEL}")
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "cohere.embed-multilingual-v3.0")
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 512))
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")


if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)

async def llm_model_func(
prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
return await openai_complete_if_cache(
LLM_MODEL,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=APIKEY,
base_url=BASE_URL,
**kwargs,
)


async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model=EMBEDDING_MODEL,
api_key=APIKEY,
base_url=BASE_URL,
)


async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim

async def init():

# Detect embedding dimension
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
# Create Oracle DB connection
# The `config` parameter is the connection configuration of Oracle DB
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud


oracle_db = OracleDB(config={
"user":"",
"password":"",
"dsn":"",
"config_dir":"",
"wallet_location":"",
"wallet_password":"",
"workspace":""
} # specify which docs you want to store and query
)

# Check if Oracle DB tables exist, if not, tables will be created
await oracle_db.check_tables()
# Initialize LightRAG
# We use Oracle DB as the KV/vector/graph storage
rag = LightRAG(
enable_llm_cache=False,
working_dir=WORKING_DIR,
chunk_token_size=512,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=512,
func=embedding_func,
),
graph_storage = "OracleGraphStorage",
kv_storage="OracleKVStorage",
vector_storage="OracleVectorDBStorage"
)

# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
rag.graph_storage_cls.db = oracle_db
rag.key_string_value_json_storage_cls.db = oracle_db
rag.vector_db_storage_cls.db = oracle_db

return rag

# Data models


class QueryRequest(BaseModel):
query: str
mode: str = "hybrid"
only_need_context: bool = False


class InsertRequest(BaseModel):
text: str


class Response(BaseModel):
status: str
data: Optional[str] = None
message: Optional[str] = None


# API routes

rag = None # 定义为全局对象

@asynccontextmanager
async def lifespan(app: FastAPI):
global rag
rag = await init() # 在应用启动时初始化 `rag`
print("done!")
yield


app = FastAPI(title="LightRAG API", description="API for RAG operations",lifespan=lifespan)

@app.post("/query", response_model=Response)
async def query_endpoint(request: QueryRequest):
try:
# loop = asyncio.get_event_loop()
result = await rag.aquery(
request.query,
param=QueryParam(
mode=request.mode, only_need_context=request.only_need_context
),
)
return Response(status="success", data=result)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))


@app.post("/insert", response_model=Response)
async def insert_endpoint(request: InsertRequest):
try:
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(request.text))
return Response(status="success", message="Text inserted successfully")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))


@app.post("/insert_file", response_model=Response)
async def insert_file(file: UploadFile = File(...)):
try:
file_content = await file.read()
# Read file content
try:
content = file_content.decode("utf-8")
except UnicodeDecodeError:
# If UTF-8 decoding fails, try other encodings
content = file_content.decode("gbk")
# Insert file content
loop = asyncio.get_event_loop()
await loop.run_in_executor(None, lambda: rag.insert(content))

return Response(
status="success",
message=f"File content from {file.filename} inserted successfully",
)
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))


@app.get("/health")
async def health_check():
return {"status": "healthy"}


if __name__ == "__main__":
import uvicorn

uvicorn.run(app, host="0.0.0.0", port=8020)

# Usage example
# To run the server, use the following command in your terminal:
# python lightrag_api_openai_compatible_demo.py

# Example requests:
# 1. Query:
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'

# 2. Insert text:
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'

# 3. Insert file:
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'

# 4. Health check:
# curl -X GET "http://127.0.0.1:8020/health"

0 comments on commit c89bf79

Please sign in to comment.