- Cockayne, D.J.H., The study of nanovolumes of amorphous materials using electron scattering. Annual Review of Materials Research, 2007. 37(1): p. 159-187.
- Cockayne, D., et al. The technique of RDF of nanovolumes using electron diffraction. in J Phys Conf Ser. 2009.
- Mitchell, D.R. and T.C. Petersen, RDFTools: a software tool for quantifying short-range ordering in amorphous materials. Microsc Res Tech, 2012. 75(2): p. 153-63.
- Voyles, P.M. and J.R. Abelson, Medium-range order in amorphous silicon measured by fluctuation electron microscopy. Solar Energy Materials and Solar Cells, 2003. 78(1-4): p. 85-113.
- Im, S., et al., Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy. Ultramicroscopy, 2018. 195: p. 189-193.
- Madsen, J. and T. Susi, The abTEM code: transmission electron microscopy from first principles. Open Res Eur, 2021. 1: p. 24.
- Madsen, J. and T. Susi, The abTEM code: transmission electron microscopy from first principles. Open Res Eur, 2021. 1: p. 24.
- Savitzky, B.H., et al., py4DSTEM: A Software Package for Four-Dimensional Scanning Transmission Electron Microscopy Data Analysis. Microsc Microanal, 2021. 27(4): p. 712-743.
- Pennycook, T.J., et al., Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: experimental demonstration at atomic resolution. Ultramicroscopy, 2015. 151: p. 160-167.
- Hachtel, J.A., J.C. Idrobo, and M. Chi, Sub-Angstrom electric field measurements on a universal detector in a scanning transmission electron microscope. Adv Struct Chem Imaging, 2018. 4(1): p. 10.
- Krajnak, M. and J. Etheridge, A symmetry-derived mechanism for atomic resolution imaging. Proc Natl Acad Sci U S A, 2020. 117(45): p. 27805-27810.
- Shao, Y.T., et al., Cepstral scanning transmission electron microscopy imaging of severe lattice distortions. Ultramicroscopy, 2021. 231: p. 113252.