Skip to content

Commit

Permalink
sorry ex
Browse files Browse the repository at this point in the history
  • Loading branch information
jjdishere committed Nov 24, 2023
1 parent 55e6239 commit 24f014e
Show file tree
Hide file tree
Showing 3 changed files with 6 additions and 5 deletions.
2 changes: 1 addition & 1 deletion EuclideanGeometry/Example/ArefWernick/Chap1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ lemma b_ne_f : B ≠ F := by
lemma d_ne_f : D ≠ F := sorry

-- Theorem : $\angle BFD = \pi / 2 - \angle CAB$
theorem Aref_Wernick_Exercise_1_2 : ∠ B F D (b_ne_f (hnd := hnd) (hd := hd) (hf := hf)) d_ne_f = π / 2 - ∠ C A B (c_ne_a (hnd := hnd)) (b_ne_a (hnd := hnd)) := sorry
theorem Aref_Wernick_Exercise_1_2 : ∠ B F D (b_ne_f (hnd := hnd) (hd := hd) (hf := hf)) d_ne_f = ↑(π / 2) - ∠ C A B (c_ne_a (hnd := hnd)) (b_ne_a (hnd := hnd)) := sorry

end Aref_Wernick_Exercise_1_2

Expand Down
5 changes: 2 additions & 3 deletions EuclideanGeometry/Example/ExerciseXT8.lean
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ namespace Exercise_XT_8_1_11
/- Let $\triangle ABC$ be a triangle. Let $X_1$, $Y_1$, and $Z_1$ be points on the extensions of $BC$, $CA$, $AB$, respectively. Let $X_2$, $Y_2$, and $Z_2$ be points on the extensions of $CB$, $AC$, $BA$, respectively.
Prove that $\angle AY_1Z_2 + \angle BZ_1X_2 + \angle CX_1Y_2 + \angle Y_1Z_2A + \angle Z_1X_2B + \angle X_1Y_2C = 2 \cdot \pi$.
-/
-/

-- Let $\triangle ABC$ be a nondegenerate triangle.
variable {A B C : P} {hnd : ¬ colinear A B C}
Expand All @@ -36,8 +36,7 @@ lemma x1_ne_y2 : X₁ ≠ Y₂ := sorry
lemma y1_ne_z2 : Y₁ ≠ Z₂ := sorry
lemma z1_ne_x2 : Z₁ ≠ X₂ := sorry

theorem XT_8_1_11 : ∠ A Y₁ Z₂ a_ne_y1 y1_ne_z2.symm + ∠ B Z₁ X₂ b_ne_z1 z1_ne_x2.symm + ∠ C X₁ Y₂ c_ne_x1 x1_ne_y2.symm + ∠ Y₁ Z₂ A y1_ne_z2 a_ne_z2 + ∠ Z₁ X₂ B z1_ne_x2 b_ne_x2 + ∠ X₁ Y₂ C x1_ne_y2 c_ne_y2 = 2 * π := sorry
theorem XT_8_1_11 : ∠ A Y₁ Z₂ a_ne_y1 y1_ne_z2.symm + ∠ B Z₁ X₂ b_ne_z1 z1_ne_x2.symm + ∠ C X₁ Y₂ c_ne_x1 x1_ne_y2.symm + ∠ Y₁ Z₂ A y1_ne_z2 a_ne_z2 + ∠ Z₁ X₂ B z1_ne_x2 b_ne_x2 + ∠ X₁ Y₂ C x1_ne_y2 c_ne_y2 = ↑(2 * π) := sorry

end Exercise_XT_8_1_11
end EuclidGeom

4 changes: 3 additions & 1 deletion EuclideanGeometry/Example/ShanZun/Ex1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ lemma d_ne_a : D ≠ A := sorry
lemma e_ne_a : E ≠ A := sorry

-- Theorem : $\angle DAE = (\angle CBA - \angle ACB) / 2$
--`This need to reformulate`
/-
theorem Shan_Problem_1_1 : ∠ D A E d_ne_a e_ne_A = (1 / 2) * (∠ C B A b_ne_c.symm a_ne_b - ∠ A C B c_ne_a.symm b_ne_c) := by
-- $\angle BAE - \angle DAE = \angle BAD$
have ang₁ : ∠ B A E a_ne_b.symm e_ne_a - ∠ D A E d_ne_a e_ne_a = ∠ B A D a_ne_b d_ne_a := sorry
Expand All @@ -38,7 +40,7 @@ theorem Shan_Problem_1_1 : ∠ D A E d_ne_a e_ne_A = (1 / 2) * (∠ C B A b_ne_c
have ang₄ : ∠ D A C d_ne_a c_ne_a - ∠ B A D a_ne_b d_ne_a = ∠ C B A b_ne_c.symm a_ne_b - ∠ A C B c_ne_a.symm b_ne_c := sorry
rw[← ang₄, ← ang₂, ← ang₁, ← ang₃]
ring

-/
end Shan_Problem_1_1

namespace Shan_Problem_1_2
Expand Down

0 comments on commit 24f014e

Please sign in to comment.