Skip to content

Commit

Permalink
Merge pull request #279 from Noaillesss/master
Browse files Browse the repository at this point in the history
Axiom/Circle
  • Loading branch information
jjdishere authored Jan 14, 2024
2 parents 44fd9c2 + 1eb615c commit 8c1190b
Show file tree
Hide file tree
Showing 3 changed files with 179 additions and 142 deletions.
5 changes: 0 additions & 5 deletions EuclideanGeometry/Foundation/Axiom/Circle/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -128,16 +128,13 @@ theorem interior_of_circle_iff_inside_not_on_circle (p : P) (ω : Circle P) : p
push_neg
exact lt_iff_le_and_ne

@[simp]
theorem mk_pt_pt_lieson {O A : P} [PtNe O A] : A LiesOn (CIR O A) := rfl

@[simp]
theorem mk_pt_pt_diam_fst_lieson {A B : P} [_h : PtNe A B] : A LiesOn (mk_pt_pt_diam A B) := by
show dist (SEG A B).midpoint A = dist (SEG A B).midpoint B
rw [dist_comm, ← Seg.length_eq_dist, ← Seg.length_eq_dist]
exact dist_target_eq_dist_source_of_midpt (seg := (SEG A B))

@[simp]
theorem mk_pt_pt_diam_snd_lieson {A B : P} [_h : PtNe A B] : B LiesOn (mk_pt_pt_diam A B) := rfl

-- Define a concept of segment to be entirely contained in a circle, to mean that the two endpoints of a segment to lie inside a circle.
Expand Down Expand Up @@ -234,7 +231,6 @@ namespace Circle

def antipode (A : P) (ω : Circle P) : P := VEC A ω.center +ᵥ ω.center

@[simp]
theorem antipode_lieson_circle {A : P} {ω : Circle P} {ha : A LiesOn ω} : (antipode A ω) LiesOn ω := by
show dist ω.center (antipode A ω) = ω.radius
rw [NormedAddTorsor.dist_eq_norm', antipode, vsub_vadd_eq_vsub_sub]
Expand All @@ -252,7 +248,6 @@ theorem antipode_symm {A B : P} {ω : Circle P} {ha : A LiesOn ω} (h : antipode
apply (eq_vadd_iff_vsub_eq _ _ _).mp h.symm
rw [← neg_vec, ← this, neg_vec]

@[simp]
theorem antipode_distinct {A : P} {ω : Circle P} {ha : A LiesOn ω} : antipode A ω ≠ A := by
intro eq
have : VEC ω.center A = VEC A ω.center := by
Expand Down
Loading

0 comments on commit 8c1190b

Please sign in to comment.