pyerrors
is a python framework for error computation and propagation of Markov chain Monte Carlo data from lattice field theory and statistical mechanics simulations.
- Documentation: https://fjosw.github.io/pyerrors/pyerrors.html
- Examples: https://github.com/fjosw/pyerrors/tree/develop/examples
- Ask a question: https://github.com/fjosw/pyerrors/discussions/new?category=q-a
- Changelog: https://github.com/fjosw/pyerrors/blob/develop/CHANGELOG.md
- Bug reports: https://github.com/fjosw/pyerrors/issues
Install the most recent release using pip and pypi:
python -m pip install pyerrors # Fresh install
python -m pip install -U pyerrors # Update
Install the most recent release using conda and conda-forge:
conda install -c conda-forge pyerrors # Fresh install
conda update -c conda-forge pyerrors # Update
We appreciate all contributions to the code, the documentation and the examples. If you want to get involved please have a look at our contribution guideline.
If you use pyerrors
for research that leads to a publication we suggest citing the following papers:
- Fabian Joswig, Simon Kuberski, Justus T. Kuhlmann, Jan Neuendorf, pyerrors: a python framework for error analysis of Monte Carlo data. Comput.Phys.Commun. 288 (2023) 108750.
- Ulli Wolff, Monte Carlo errors with less errors. Comput.Phys.Commun. 156 (2004) 143-153, Comput.Phys.Commun. 176 (2007) 383 (erratum).
- Alberto Ramos, Automatic differentiation for error analysis of Monte Carlo data. Comput.Phys.Commun. 238 (2019) 19-35.
- Stefan Schaefer, Rainer Sommer, Francesco Virotta, Critical slowing down and error analysis in lattice QCD simulations. Nucl.Phys.B 845 (2011) 93-119.