This repository has been archived by the owner on Oct 30, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 100
Troubleshooting
Jin-Hwa Kim edited this page Jun 15, 2018
·
3 revisions
Welcome to the ban-vqa troubleshooting wiki!
data
├── annotations
│ ├── captions_train2017.json
│ └── captions_val2017.json
├── cache
│ ├── train_target.pkl
│ ├── trainval_ans2label.pkl
│ ├── trainval_label2ans.pkl
│ ├── val_target.pkl
│ ├── vg_train_adaptive_target.pkl
│ ├── vg_train_target.pkl
│ ├── vg_val_adaptive_target.pkl
│ └── vg_val_target.pkl
├── dictionary.pkl
├── glove
│ ├── glove.6B.100d.txt
│ ├── glove.6B.200d.txt
│ ├── glove.6B.300d.txt
│ └── glove.6B.50d.txt
├── glove6b_init_300d.npy
├── image_data.json
├── question_answers.json
├── test2015.hdf5
├── test2015_imgid2idx.pkl
├── train.hdf5
├── train_imgid2idx.pkl
├── v2_OpenEnded_mscoco_test2015_questions.json
├── v2_OpenEnded_mscoco_train2014_questions.json
├── v2_OpenEnded_mscoco_val2014_questions.json
├── val.hdf5
└── val_imgid2idx.pkl
The hyperparameters of this repository demand you should have 4 GPUs with 12 GB memory each. If you have only 1 or 2 GPUs and want to run the code to train (if you want to evaluate the downloaded pretrained model, reducing batch_size
in test.py
does not affect the results), the first viable option might be to reduce batch_size
from 256 to smaller one. However this change can cause a minor performance drop, so you may want to adjust learning rate schedule in this function of train.py
. Unfortunately, we have not yet explored the hyperparameters for this scenario. If you find any good one, please share your shining settings.