-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
5,415 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
model: | ||
latent_dim: 32 | ||
base_channels: 64 | ||
num_layers: 4 | ||
use_resnet_feature: false | ||
|
||
checkpoint_path: "./checkpoints/checkpoint.pth" | ||
|
||
input: | ||
# For video processing | ||
video_path: "face.mp4" | ||
frame_skip: 0 | ||
|
||
# For single frame processing | ||
current_frame_path: "path/to/current_frame.jpg" | ||
reference_frame_path: "path/to/reference_frame.jpg" | ||
|
||
output: | ||
path: "output.mp4" # or "path/to/output.png" for single frame |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
import torch | ||
import torch.nn as nn | ||
from torchvision import transforms | ||
from torchvision.utils import save_image | ||
from PIL import Image | ||
import os | ||
from model import IMFModel | ||
from omegaconf import OmegaConf | ||
import numpy as np | ||
from decord import VideoReader | ||
from decord import cpu, gpu | ||
import cv2 | ||
|
||
def load_image(image_path, transform): | ||
image = Image.open(image_path).convert('RGB') | ||
return transform(image).unsqueeze(0) | ||
|
||
def save_output(tensor, filename): | ||
save_image(tensor, filename, normalize=True) | ||
|
||
def process_video(model, video_path, output_path, transform, device, frame_skip=0): | ||
ctx = gpu(0) if torch.cuda.is_available() else cpu(0) | ||
vr = VideoReader(video_path, ctx=ctx) | ||
|
||
fps = vr.get_avg_fps() | ||
width, height = vr[0].shape[1], vr[0].shape[0] | ||
|
||
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | ||
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | ||
|
||
reference_frame = vr[0].asnumpy() | ||
reference_frame = Image.fromarray(reference_frame) | ||
reference_frame = transform(reference_frame).unsqueeze(0).to(device) | ||
|
||
total_frames = len(vr) | ||
for i in range(1, total_frames): | ||
if i % (frame_skip + 1) != 0: | ||
continue | ||
|
||
current_frame = vr[i].asnumpy() | ||
current_frame = Image.fromarray(current_frame) | ||
current_frame = transform(current_frame).unsqueeze(0).to(device) | ||
|
||
with torch.no_grad(): | ||
reconstructed_frame = model(current_frame, reference_frame) | ||
|
||
reconstructed_frame = reconstructed_frame.squeeze().cpu().numpy().transpose(1, 2, 0) | ||
reconstructed_frame = (reconstructed_frame * 255).astype(np.uint8) | ||
reconstructed_frame = cv2.cvtColor(reconstructed_frame, cv2.COLOR_RGB2BGR) | ||
|
||
out.write(reconstructed_frame) | ||
|
||
out.release() | ||
|
||
def main(): | ||
# Load configuration | ||
config = OmegaConf.load('./configs/inference.yaml') | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
|
||
# Initialize the model | ||
model = IMFModel( | ||
latent_dim=config.model.latent_dim, | ||
base_channels=config.model.base_channels, | ||
num_layers=config.model.num_layers, | ||
use_resnet_feature=config.model.use_resnet_feature | ||
).to(device) | ||
|
||
# Load the checkpoint | ||
checkpoint = torch.load(config.checkpoint_path, map_location=device) | ||
model.load_state_dict(checkpoint['model_state_dict']) | ||
model.eval() | ||
|
||
transform = transforms.Compose([ | ||
transforms.Resize((256, 256)), | ||
transforms.ToTensor(), | ||
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||
]) | ||
|
||
if config.input.video_path: | ||
process_video(model, config.input.video_path, config.output.path, transform, device, config.input.frame_skip) | ||
else: | ||
current_frame = load_image(config.input.current_frame_path, transform).to(device) | ||
reference_frame = load_image(config.input.reference_frame_path, transform).to(device) | ||
|
||
with torch.no_grad(): | ||
reconstructed_frame = model(current_frame, reference_frame) | ||
|
||
save_output(reconstructed_frame, config.output.path) | ||
|
||
if __name__ == "__main__": | ||
main() |
Oops, something went wrong.