Skip to content

Smoothing kernels for use in kernel regression and kernel density estimation

License

Notifications You must be signed in to change notification settings

johnmyleswhite/SmoothingKernels.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SmoothingKernels.jl

These kernels are designed for use in smoothing algorithms such as kernel regression and kernel density estimation. They are implemented in both unnormalized and normalized form.

Mathematical Form of Implemented Kernels

Currently, the kernels implemented are those found in the Wikipedia article on kernels in statistics.

In normalized form, the kernels are:

  • Uniform: $K(u) = \frac{1}{2} I(|u| \leq 1)$
  • Triangular: $K(u) = (1 - |u|) I(|u| \leq 1)$
  • Epanechnikov: $K(u) = \frac{3}{4} (1 - |u|^2) I(|u| \leq 1)$
  • Biweight (Quartic): $K(u) = \frac{15}{16} (1 - |u|^2)^2 I(|u| \leq 1)$
  • Triweight: $K(u) = \frac{35}{32} (1 - |u|^2)^3 I(|u| \leq 1)$
  • Tricube: $K(u) = \frac{70}{81} (1 - |u|^3)^3 I(|u| \leq 1)$
  • Gaussian: $K(u) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}u^2}$
  • Cosine: $K(u) = \frac{\pi}{4} \cos(\frac{\pi}{2} u) I(|u| \leq 1)$
  • Logistic: $K(u) = \frac{1}{e^u + 2 + e^{-u}}$

Usage Example

using SmoothingKernels, StatsBase

x = randn(100)

h = StatsBase.bandwidth(x)

λ = 1 / h

kval = λ * SmoothingKernels.kernels[:uniform](λ * (x - 0))
kval = λ * SmoothingKernels.unnormalized_kernels[:uniform](λ * (x - 0))

kval = λ * SmoothingKernels.kernels[:gaussian](λ * (x - 0))
kval = λ * SmoothingKernels.unnormalized_kernels[:gaussian](λ * (x - 0))

To Do

Extend these kernels to work with data points in $\mathbb{R}^k$ and not just $\mathbb{R}$.

About

Smoothing kernels for use in kernel regression and kernel density estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages