-
Notifications
You must be signed in to change notification settings - Fork 3
License
jongpillee/musicTagging_MSD
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
# README ---------------------------------------------------------------------------- * Contact Info * <Jongpil Lee> Korea Advanced Institute of Science and Technoloty (KAIST) Graduate School of Culture Techonology (GSCT) richter@kaist.ac.kr ---------------------------------------------------------------------------- * Description * This is slightly modifided versions from our submission to the 2017 MIREX audio classification (train/test) tasks. Used model is based on our previously published paper [https://arxiv.org/abs/1706.06810]. Dataset [https://github.com/jongpillee/music_dataset_split/tree/master/MSD_split] There are total two functions in this repo. 1. predicting 50 tags using sampleCNN learned from MSD tagging dataset. 2. transfer last hidden layer of the sampleCNN to your new task. This function consists of two stage: feature extraction and train/classification. ---------------------------------------------------------------------------- * Platform and Requirements * <Dependencies> keras 1.1.0 theano 0.8.2 python 2.7.6 <Python Libraries> librosa numpy sklearn <input> 30s, 22.05kHz, wav file is expected input ---------------------------------------------------------------------------- * Use * 1. 50 tag prediction ./ForwardProp.sh -m=prediction /path/to/save/folder /path/to/fileList.txt Example fileList.txt /media/bach1/dataset/gtzan/blues/blues.00035.wav /media/bach1/dataset/gtzan/blues/blues.00036.wav /media/bach1/dataset/gtzan/blues/blues.00037.wav {"file_name": "./path/to/save/folder/individual_file_List.json", "prediction_msd": {"beautiful": "0.0206099", "punk": "0.00465381", "indie": "0.0876653", "male vocalists": "0.0211934", "female vocalist": "0.00529418", "heavy metal": "0.00191998", "pop": "0.063148", "sad": "0.015539", "00s": "0.0115924", "ambient": "0.0148107", "alternative": "0.0425866", "hard rock": "0.00436063", "electronic": "0.016531", "blues": "0.143018", "folk": "0.315052", "classic rock": "0.0361686", "alternative rock": "0.00850769", "90s": "0.00585691", "60s": "0.0267258", "indie rock": "0.0129534", "electronica": "0.00600895", "female vocalists": "0.0476008", "easy listening": "0.0104203", "dance": "0.00346507", "funk": "0.00661781", "House": "0.00164513", "80s": "0.00953005", "party": "0.00136872", "Mellow": "0.0486049", "electro": "0.00234408", "chillout": "0.017821", "happy": "0.00424408", "oldies": "0.0182328", "rnb": "0.00878901", "jazz": "0.123137", "70s": "0.0187786", "instrumental": "0.0407893", "indie pop": "0.0125248", "sexy": "0.00269948", "Hip-Hop": "0.00374524", "chill": "0.0139084", "guitar": "0.0837907", "country": "0.0271717", "metal": "0.00198551", "soul": "0.0420783", "catchy": "0.00135911", "rock": "0.118368", "acoustic": "0.203366", "Progressive rock": "0.0103604", "experimental": "0.024019"}} These json files of file list would be saved in the save folder. 2. get last hidden layer and train svm onto new label dataset # get last hidden layer ./ForwardProp.sh -m=encoding /path/to/save/folder /path/to/fileList.txt # train and classification ./TrainAndClassify.sh /path/to/save/folder /path/to/trainListFile.txt /path/to/testListFile.txt /path/to/output Example trainListFile.txt /media/bach1/dataset/gtzan/blues/blues.00029.wav blues /media/bach1/dataset/gtzan/blues/blues.00030.wav blues /media/bach1/dataset/gtzan/blues/blues.00031.wav blues /media/bach1/dataset/gtzan/blues/blues.00032.wav blues ... Example testListFile.txt /media/bach1/dataset/gtzan/blues/blues.00035.wav /media/bach1/dataset/gtzan/blues/blues.00036.wav /media/bach1/dataset/gtzan/blues/blues.00037.wav Expected output file /media/bach1/dataset/gtzan/blues/blues.00035.wav blues /media/bach1/dataset/gtzan/blues/blues.00036.wav blues /media/bach1/dataset/gtzan/blues/blues.00037.wav blues --------------------------------------------------------------------------- * Example Usage * 1. ./ForwardProp.sh -m=prediction ./prediction_folder train_list.txt 2. ./ForwardProp.sh -m=encoding ./encoding_folder train_list.txt ./ForwardProp.sh -m=encoding ./encoding_folder test_list.txt ./TrainAndClassify.sh ./encoding_folder train_list.txt test_list.txt output.txt ---------------------------------------------------------------------------
About
No description, website, or topics provided.
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published