Skip to content

Commit

Permalink
llava : MobileVLM support (ggerganov#4954)
Browse files Browse the repository at this point in the history
* MobileVLM native implementation

* delete depthwise_conv_2d and permute_cpy relative code, replace the two by the existed functions, and opt ldp definition, support LLAMA_PERF option for CMake

* move android script to example/llava directory

* Fix the editor config checks

---------

Co-authored-by: Chenxiaotao03 <chenxiaotao03@meituan.com>
  • Loading branch information
2 people authored and jordankanter committed Feb 3, 2024
1 parent 40967f2 commit 8cdc4f4
Show file tree
Hide file tree
Showing 8 changed files with 737 additions and 24 deletions.
7 changes: 7 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -108,6 +108,13 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STA
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
option(LLAMA_BUILD_SERVER "llama: build server example" ON)


# add perf arguments
option(LLAMA_PERF "llama: enable perf" OFF)
if (LLAMA_PERF)
add_definitions(-DGGML_PERF)
endif()

# Required for relocatable CMake package
include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake)

Expand Down
131 changes: 131 additions & 0 deletions examples/llava/MobileVLM-README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
# MobileVLM

Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants.

for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM)

The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava.

## Usage
Build with cmake or run `make llava-cli` to build it.

After building, run: `./llava-cli` to see the usage. For example:

```sh
./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \
--mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \
--image path/to/an/image.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:"
```

## Model conversion

- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally:

```sh
git clone https://huggingface.co/mtgv/MobileVLM-1.7B

git clone https://huggingface.co/openai/clip-vit-large-patch14-336
```

2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents:

```sh
python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B
```

3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF:

```sh
python ./examples/llava/convert-image-encoder-to-gguf \
-m path/to/clip-vit-large-patch14-336 \
--llava-projector path/to/MobileVLM-1.7B/llava.projector \
--output-dir path/to/MobileVLM-1.7B \
--projector-type ldp
```

4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:

```sh
python ./convert.py path/to/MobileVLM-1.7B
```

5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
```sh
./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s
```

Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory.

## Android compile and run
### compile
refer to `examples/llava/android/build_64.sh`
```sh
mkdir examples/llava/android/build_64
cd examples/llava/android/build_64
../build_64.sh
```
### run on Android
refer to `android/adb_run.sh`, modify resources' `name` and `path`

## some result on Android with `Snapdragon 888` chip
### case 1
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/demo.jpg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
```
**output**
```sh
encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch)
Susan Wise Bauer
llama_print_timings: load time = 23574.72 ms
llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second)
llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second)
llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second)
llama_print_timings: total time = 34731.93 ms
```
### case 2
**input**
```sh
/data/local/tmp/llava-cli \
-m /data/local/tmp/ggml-model-q4_k.gguf \
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
-t 4 \
--image /data/local/tmp/cat.jpeg \
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
```

**output**
```sh
encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch)
The image depicts a cat sitting in the grass near some tall green plants.
llama_print_timings: load time = 23257.32 ms
llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second)
llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second)
llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second)
llama_print_timings: total time = 34570.79 ms
```

## Minor shortcomings
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.

## TODO

- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
- [ ] Optimize LDP projector performance

- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
- [ ] run MobileVLM on `Jetson Orin`
- [ ] Support more model variants, such as `MobileVLM-3B`.


## contributor
```sh
zhangjidong05, yangyang260, huyiming03, chenxiaotao03
```
53 changes: 53 additions & 0 deletions examples/llava/android/adb_run.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#!/bin/bash

model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
projector_name="mmproj-model-f16.gguf"
llama_name="ggml-model-q4_k.gguf"
img_dir="/Users/cxt/model/llm"
img_name="demo.jpg"
prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
# img_name="cat.jpeg"
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"

program_dir="build_64/bin"
binName="llava-cli"
n_threads=4


deviceDir="/data/local/tmp"
saveDir="output"
if [ ! -d ${saveDir} ]; then
mkdir ${saveDir}
fi


function android_run() {
# # copy resource into device
# adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
# adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
# copy program into device
adb push ${program_dir}/${binName} ${deviceDir}/${binName}
adb shell "chmod 0777 ${deviceDir}/${binName}"

# run
adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
>> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
}

android_run

echo "android_run is Done!"
8 changes: 8 additions & 0 deletions examples/llava/android/build_64.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
#!/bin/bash
cmake ../../../../ \
-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \
-DCMAKE_BUILD_TYPE=Release \
-DANDROID_ABI="arm64-v8a" \
-DANDROID_PLATFORM=android-23 $1

make -j4
Loading

0 comments on commit 8cdc4f4

Please sign in to comment.