This project addresses a common problem with the development of python packages in which there several higher level functions that have are many keyword options that are processed by low level functions. Typically, the higher level functions use **kwargs
to pass keywords transparently to the lower level functions. This is an excellent use of python's capabilities.
But it creates a problem when used with intellisense in that the keyword options are only exposed at the lower level.
To illustrate, consider the following low level plotting function that is called by two plotting functions.
def lowlevelPlot(data, num_col:int=2, num_row:int=3, bins=100):
"""
General plot function.
Parameters
----------
num_col: Number of columns of plots
num_row: Number of rows of plots
bins: Number of bins
"""
...
def plotHist(data:np.ndarray, num_col:int=2, num_row:int=3, bins=100):
"""
Plot a histogram.
Parameters
----------
num_col: Number of columns of plots
default: 2
num_row: Number of rows of plots
default: 3
bins: Number of bins
default: 100
"""
...
lowlevelPlot(num_col=num_col, num_row=num_row, bins=bins)
def plotTimeseries(data:np.ndarray, num_col:int=2, num_row:int=3):
"""
Plot a histogram.
Parameters
----------
num_col: Number of columns of plots
default: 2
num_row: Number of rows of plots
"""
...
lowlevelPlot(num_col=num_col, num_row=num_row)
`
Since there is an almost unlimited number of options for plotting, we expect that the keyword options for genPlot
will grow over time. For example, we may want to add options for a title, the position of the title, and its font. These should be transparently available to hist
and timeseries
, without changing their signatures or docstrings. So, a more maintainable version of these functions is:
def plotHist(data, **kwargs):
"""
Plot a histogram.
Parameters
----------
See lowlevelPlot.
"""
...
lowlevelPlot(**kwargs)
def plotTimeseries(data:np.ndarray, **kwargs):
"""
Plot a histogram.
Parameters
----------
See lowlevelPlot.
"""
...
lowlevelPlot(**kwargs)
But now intellisense doesn't work since the options exposed for a function by intellisese are what's in the docstring of function.
docstring_expander
provides another solution. Suppose we have the following dictionary that describes all keyword arguments for genPlot
:
import docstring_expander as de
kwargs = [
de.Kwarg('num_col', dtype=int, default=2, doc='Number of columns of plots'),
de.Kwarg('num_row', dtype=int, default=3, doc='Number of rows of plots'),
de.Kwarg(name='bins' default=100, doc='Number of bins'),
]
We define a few keyword arguments as common to most plotting functions.
base = ['num_col', 'num_row']
Then we can write:
@de.Expander(kwargs, base, includes=['bins'])
def plotHist(data:np.ndarray, **kwargs):
"""
Plot a histogram.
Parameters
----------
#@expand
"""
...
lowlevelPlot(**kwargs)
@de.Expander(kwargs, base)
def plotTimeseries(data:np.ndarray, **kwargs):
"""
Plot a histogram.
Parameters
----------
#@exapnd
"""
...
lowlevelPlot(**kwargs)
For plotHist
, the decorator replaces #@expand
with:
num_col: int
Number of columns of plots
default: 2
num_row: int
Number of rows of plots
default: 3
bins:
Number of bins
default: 100
The keyword arguments in the expansion are those in base
plus those in includes
minus those in excludes
.