forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
port mxnet test_forward to test_forward_vm
- Loading branch information
Showing
2 changed files
with
139 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
"""Benchmarking Relay VM using models from MxNet.""" | ||
import numpy as np | ||
import mxnet as mx | ||
|
||
import tvm | ||
from tvm.contrib import graph_runtime | ||
from tvm import relay | ||
|
||
import model_zoo | ||
|
||
|
||
def benchmark_execution(mx_symbol, | ||
data_shape=(1, 3, 224, 224), | ||
out_shape=(1, 1000), | ||
dtype='float32'): | ||
def get_mxnet_output(symbol, x, dtype='float32'): | ||
from collections import namedtuple | ||
Batch = namedtuple('Batch', ['data']) | ||
mod = mx.mod.Module(symbol, label_names=None) | ||
mod.bind(data_shapes=[('data', x.shape)], for_training=False) | ||
mod.init_params() | ||
mod.forward(Batch([mx.nd.array(x.astype(dtype))])) | ||
out = mod.get_outputs()[0].asnumpy() | ||
args, auxs = mod.get_params() | ||
return out, args, auxs | ||
|
||
def get_func_param(symbol, x, args, auxs): | ||
shape_dict = {"data": x.shape} | ||
new_sym, params = relay.frontend.from_mxnet( | ||
symbol, shape_dict, arg_params=args, aux_params=auxs) | ||
return new_sym, params | ||
|
||
def get_tvm_output(symbol, x, args, auxs, target, ctx, dtype='float32'): | ||
new_sym, params = get_func_param(symbol, x, args, auxs) | ||
with relay.build_config(opt_level=3): | ||
graph, lib, params = relay.build(new_sym, target, params=params) | ||
|
||
m = graph_runtime.create(graph, lib, ctx) | ||
# set inputs | ||
m.set_input("data", tvm.nd.array(x.astype(dtype))) | ||
m.set_input(**params) | ||
m.run() | ||
out = m.get_output(0, tvm.nd.empty(out_shape, dtype)) | ||
return out.asnumpy() | ||
|
||
def get_tvm_vm_output(symbol, x, args, auxs, target, ctx, dtype='float32'): | ||
func, params = get_func_param(symbol, x, args, auxs) | ||
params = [params[k] for k in params] | ||
params = [x] + params | ||
ex = relay.create_executor('vm', mod=relay.Module(), ctx=ctx) | ||
result = ex.evaluate(func)(*params) | ||
return result.asnumpy() | ||
|
||
# random input | ||
x = np.random.uniform(size=data_shape).astype(dtype) | ||
target = "llvm" | ||
ctx = tvm.cpu(0) | ||
|
||
_, args, auxs = get_mxnet_output(mx_symbol, x, dtype) | ||
assert "data" not in args | ||
tvm_out = get_tvm_output(mx_symbol, x, args, auxs, target, ctx, dtype) | ||
vm_out = get_tvm_vm_output(mx_symbol, x, args, auxs, target, ctx, dtype) | ||
tvm.testing.assert_allclose(vm_out, tvm_out, rtol=1e-5, atol=1e-5) | ||
|
||
|
||
def test_mlp(): | ||
mlp = model_zoo.mx_mlp() | ||
benchmark_execution(mlp, data_shape=(1, 1, 28, 28), out_shape=(1, 10)) | ||
|
||
|
||
def test_vgg(): | ||
for n in [11, 16]: | ||
mx_sym = model_zoo.mx_vgg(n) | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_resnet(): | ||
for n in [18, 50]: | ||
mx_sym = model_zoo.mx_resnet(n) | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_squeezenet(): | ||
for version in ['1.0', '1.1']: | ||
mx_sym = model_zoo.mx_squeezenet(version) | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_inception_v3(): | ||
shape = {"data": (1, 3, 299, 299)} | ||
mx_sym = model_zoo.mx_inception_v3() | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_dqn(): | ||
shape = {"data": (1, 4, 84, 84)} | ||
mx_sym = model_zoo.mx_dqn() | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_dcgan(): | ||
shape = {"data": (2, 100)} | ||
mx_sym = model_zoo.mx_dcgan() | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
def test_multi_outputs(): | ||
xshape = (10, 27) | ||
yshape = (10, 9) | ||
|
||
def mx_compose(F, **kwargs): | ||
x = F.sym.Variable("x") | ||
y = F.sym.Variable("y") | ||
z = F.sym.split(x, **kwargs) | ||
return F.sym.broadcast_sub(F.sym.broadcast_add(z[0], z[2]), y) | ||
|
||
def relay_compose(F, **kwargs): | ||
x = F.var("x", shape=xshape) | ||
y = F.var("y", shape=yshape) | ||
z = F.split(x, **kwargs) | ||
z = F.subtract(F.add(z[0], z[2]), y) | ||
return relay.Function(relay.ir_pass.free_vars(z), z) | ||
|
||
mx_sym = mx_compose(mx, num_outputs=3, axis=1) | ||
benchmark_execution(mx_sym) | ||
|
||
|
||
if __name__ == '__main__': | ||
test_mlp() | ||
# test_resnet() | ||
# test_vgg() | ||
# test_multi_outputs() | ||
# test_dqn() | ||
# test_dcgan() | ||
# test_squeezenet() | ||
# test_inception_v3() |