Skip to content

jtkullo/emotion-recognition

 
 

Repository files navigation

emotion-recognition

基于皮肤电信号的情绪识别算法emotion-recognition

基于皮肤电信号的情绪识别算法

代码架构

├── butter.py 巴特沃斯滤波器(代码中并未使用,可参考) ├── data 训练数据集 │   ├── happy 高兴 │   │   ├── x.csv │   ├── normal 平静 │   │   ├── x.csv │   └── sad 悲伤 │   ├── x.csv ├── database.py 数据库连接 ├── generatevector.py 特征向量提取,调用getattr ├── getattr.py 提取算法 ├── main.py 主函数 ├── model 训练所得模型 │   ├── happy_model.m │   ├── happy_other.csv │   ├── normal_sad.csv │   ├── sad_model.m │   ├── train_model.m │   ├── vector.mat │   └── vector_select.m ├── my_svm.py 支持向量机 ├── plotdata.py 绘图(测试代码,未使用) ├── pre.pptx PPT展示 ├── pycache │   ├── database.cpython-36.pyc │   ├── generatevector.cpython-36.pyc │   ├── getattr.cpython-36.pyc │   └── my_svm.cpython-36.pyc └── README.md

工作流程

1 通过MP150提取被试皮电信号,情绪激发通过视频素材激发

2 每个被试每种情绪采集80s有效信号,采样频率20Hz,共1600个数据点

3 提取皮电信号特征向量,时域信号28个,频域信号6个,共34个,如下表

特征编号 特征代号 特征含义
1 sc_mean GSR信号均值
2 sc_median GSR信号中值
3 sc_std GSR信号标准差
4 sc_min GSR信号最小值
5 sc_max GSR信号最大值
6 sc_range GSR最大值最小值之差
7 sc_min_ratio GSR最小值比率
8 sc_max_ratio GST最大值比率
9 sc1diff_mean 一阶差分均值
10 sc1diff_median 一阶差分中值
11 sc1diff_std 一阶差分标准差
12 sc1diff_min 一阶差分最小值
13 sc1diff_max 一阶差分最大值
14 sc1diff_range 一阶差分最大值最小值之差
15 sc1diff_min_ratio 一阶差分最小值比率
16 sc1diff_max_ratio 一阶差分最大值比率
17 sc1adiff_mean 一阶差分绝对值均值
18 sc1gdiff_mean 归一化信号一阶差分绝对值均值
19 sc2diff_mean 二阶差分均值
20 sc2diff_median 二阶差分中值
21 sc2diff_std 二阶差分标准差
22 sc2diff_min 二阶差分最小值
23 sc2diff_max 二阶差分最大值
24 sc2diff_range 二阶差分最大值最小值之差
25 sc2diff_min_ratio 二阶差分最小值比率
26 sc2diff_max_ratio 二阶差分最大值比率
27 sc2adiff_mean 二阶差分绝对值均值
28 sc2gdiff_mean 归一化信号二阶差分绝对值均值
29 scfft_mean GSR频域均值
30 scfft_median GSR频域中值
31 scfft_std GSR频域标准差
32 scfft_min GSR频域最小值
33 scfft_max GSR频域最大值
34 scfft_range GSR频域最大值最小值之差

4 特征选取,使用随机森林算法,最终选取贡献度为平均贡献度1.25倍的特征,组建新的特征向量。

5 训练模型,采取支持向量机,一对多策略从而实现多分类的目的。

6 预测,arduino进行信号采集写入到端口中,该工程读取串口数据存入缓存区。当缓存区数据点>50时,计算特征向量给出预测结果。整个过程通过matplotlib进行交互式展现。

About

基于皮肤电信号的情绪识别算法

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%