Skip to content

vanila GAN implementation with tensorflow (latent vector + MNIST)

Notifications You must be signed in to change notification settings

juiceleee/Generative_Adversarial_Networks

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

78 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative_Adversarial_Networks

Various GAN networks implemented with tensorflow/pytorch

Result of InfoGAN-pytorch

Alt text

Requirements

opencv-python==3.3.0.10
Pillow==4.3.0
torch==0.4.0
tensorflow-gpu==1.7.0
tensorflow-tensorboard==0.4.0rc3

Pytorch Network Architecture

Architectures are Different with Papers

  • Vanilla_GAN
    • D
      • Conv2d(1, 32, 3, 1), Relu
      • Conv2d(32, 64, 3, 1), Relu
      • FC(28x28x64, 625)
      • FC(625, 1)
      • dropout(0.5)
      • Sigmoid
    • G
      • FC(100, 256), Relu, BatchNorm
      • FC(256, 512), Relu, BatchNorm
      • FC(512, 28x28)
      • Sigmoid
  • DCGAN
    • D
      • Conv2d(1, 32, 3, 1), Relu
      • Conv2d(32, 64, 3, 1), Relu
      • FC(28x28x64, 625)
      • FC(625, 1)
      • dropout(0.5)
      • Sigmoid
    • G
      • FC(100, 7x7x16)
      • ConvTranspose2d(16, 4, 2, 2), Relu, BatchNorm
      • ConvTranspose2d(4, 1, 2, 2)
      • Sigmoid
  • InfoGAN
    • D_front
      • Conv2d(1, 32, 3, 1), LeakyRelu(0.1)
      • Conv2d(32, 64, 3, 1), LeakyRelu(0.1)
      • dropout(0.3)
      • FC(28x28x64, 625), LeakyRelu(0.1)
      • for D
        • D_front
        • FC(625, 1)
        • dropout(0.5)
        • Sigmoid
      • for Q_class
        • D_front
        • FC(625, 10), Softmax
      • for Q_cont
        • D_front
        • FC(625, 2), Sigmoid
    • G
      • FC(62+12, 7x7x16)
      • ConvTranspose2d(16, 4, 2, 2), Relu, BatchNorm
      • ConvTranspose2d(4, 1, 2, 2)
      • Sigmoid

Reference

About

vanila GAN implementation with tensorflow (latent vector + MNIST)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages