Various GAN networks implemented with tensorflow/pytorch
-
Pytorch Implementation: Yoo Jaehoon
-
Tensorflow Implementation: juiceleee
opencv-python==3.3.0.10
Pillow==4.3.0
torch==0.4.0
tensorflow-gpu==1.7.0
tensorflow-tensorboard==0.4.0rc3
Architectures are Different with Papers
- Vanilla_GAN
- D
- Conv2d(1, 32, 3, 1), Relu
- Conv2d(32, 64, 3, 1), Relu
- FC(28x28x64, 625)
- FC(625, 1)
- dropout(0.5)
- Sigmoid
- G
- FC(100, 256), Relu, BatchNorm
- FC(256, 512), Relu, BatchNorm
- FC(512, 28x28)
- Sigmoid
- D
- DCGAN
- D
- Conv2d(1, 32, 3, 1), Relu
- Conv2d(32, 64, 3, 1), Relu
- FC(28x28x64, 625)
- FC(625, 1)
- dropout(0.5)
- Sigmoid
- G
- FC(100, 7x7x16)
- ConvTranspose2d(16, 4, 2, 2), Relu, BatchNorm
- ConvTranspose2d(4, 1, 2, 2)
- Sigmoid
- D
- InfoGAN
- D_front
- Conv2d(1, 32, 3, 1), LeakyRelu(0.1)
- Conv2d(32, 64, 3, 1), LeakyRelu(0.1)
- dropout(0.3)
- FC(28x28x64, 625), LeakyRelu(0.1)
- for D
- D_front
- FC(625, 1)
- dropout(0.5)
- Sigmoid
- for Q_class
- D_front
- FC(625, 10), Softmax
- for Q_cont
- D_front
- FC(625, 2), Sigmoid
- G
- FC(62+12, 7x7x16)
- ConvTranspose2d(16, 4, 2, 2), Relu, BatchNorm
- ConvTranspose2d(4, 1, 2, 2)
- Sigmoid
- D_front
-
Vanilla_GAN : [https://arxiv.org/abs/1406.2661]
-
DCGAN : [https://arxiv.org/abs/1511.06434]
-
InfoGAN : [https://arxiv.org/abs/1606.03657]