Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix #111 and maybe minor fixes WIP #113

Merged
merged 17 commits into from
Mar 17, 2024
47 changes: 26 additions & 21 deletions src/QCQP/MOI_wrapper.jl
Original file line number Diff line number Diff line change
Expand Up @@ -211,6 +211,24 @@ function _subs!(
)
end

"""
_subs_ensure_moi_order(p::PolyJuMP.ScalarPolynomialFunction, old, new)

Substitutes old `MP.variables(p.polynomial)` with new vars, while re-sorting the
MOI `p.variables` to get them in the correct order after substitution.
"""
function _subs_ensure_moi_order(p::PolyJuMP.ScalarPolynomialFunction, old, new)
if isempty(old)
return p
end
poly = MP.subs(p.polynomial, old => new)
all_new_vars = MP.variables(poly)
to_old_map = Dict(zip(new, old))
to_moi_map = Dict(zip(MP.variables(p.polynomial), p.variables))
moi_vars = [to_moi_map[get(to_old_map, v, v)] for v in all_new_vars]
return PolyJuMP.ScalarPolynomialFunction(poly, moi_vars)
end

odow marked this conversation as resolved.
Show resolved Hide resolved
function _subs!(
p::PolyJuMP.ScalarPolynomialFunction,
index_to_var::Dict{K,V},
Expand All @@ -227,10 +245,7 @@ function _subs!(
index_to_var[vi] = var
end
end
if !isempty(old_var)
poly = MP.subs(p.polynomial, old_var => new_var)
p = PolyJuMP.ScalarPolynomialFunction(poly, p.variables)
end
p = _subs_ensure_moi_order(p, old_var, new_var)
return p, index_to_var
end

Expand Down Expand Up @@ -336,23 +351,13 @@ function MOI.Utilities.final_touch(model::Optimizer{T}, _) where {T}
vars = _add_variables!(func, vars)
monos = _add_monomials!(func, monos)
end
if !isempty(model.constraints)
for S in keys(model.constraints)
for ci in MOI.get(
model,
MOI.ListOfConstraintIndices{
PolyJuMP.ScalarPolynomialFunction{
T,
model.constraints[S][1],
},
S,
}(),
)
func = MOI.get(model, MOI.ConstraintFunction(), ci)
func, index_to_var = _subs!(func, index_to_var)
vars = _add_variables!(func, vars)
monos = _add_monomials!(func, monos)
end
for (S, constraints) in model.constraints
F = PolyJuMP.ScalarPolynomialFunction{T,constraints[1]}
for ci in MOI.get(model, MOI.ListOfConstraintIndices{F,S}())
func = MOI.get(model, MOI.ConstraintFunction(), ci)
func, index_to_var = _subs!(func, index_to_var)
vars = _add_variables!(func, vars)
monos = _add_monomials!(func, monos)
end
end
if !isnothing(monos)
Expand Down
23 changes: 0 additions & 23 deletions src/functions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -64,29 +64,6 @@ function Base.convert(
return ScalarPolynomialFunction{T,P}(poly, variables)
end

function _to_polynomial!(
d::Dict{K,V},
::Type{T},
func::MOI.ScalarQuadraticFunction{T},
) where {K,V,T}
terms = MP.term_type(V, T)[MOI.constant(func)]
for t in func.affine_terms
push!(terms, MP.term(t.coefficient, _to_polynomial!(d, T, t.variable)))
end
for t in func.quadratic_terms
coef = t.variable_1 == t.variable_2 ? t.coefficient / 2 : t.coefficient
push!(
terms,
MP.term(
coef,
_to_polynomial!(d, T, t.variable_1) *
_to_polynomial!(d, T, t.variable_2),
),
)
end
return MP.polynomial(terms)
end

function Base.convert(
::Type{ScalarPolynomialFunction{T,P}},
func::MOI.ScalarQuadraticFunction{T},
Expand Down
10 changes: 9 additions & 1 deletion src/nl_to_polynomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -95,6 +95,13 @@ function _to_polynomial!(
elseif _is_operator(expr, :/) && length(operands) == 2
a, b = _to_polynomial!.(Ref(d), T, operands)
return a / b
# TODO(odow): see PR#113
# divisor, remainder = Base.divrem(a, b)
# if iszero(remainder)
# return divisor
# else
# return a / b
# end
elseif _is_variable(expr)
return _to_polynomial!(d, T, operands[1])
else
Expand All @@ -109,7 +116,8 @@ function _to_polynomial(expr, ::Type{T}) where {T}
end

function _scalar_polynomial(d::Dict{K,V}, ::Type{T}, poly) where {T,K,V}
variable_map = collect(d)
var_set = Set(MP.variables(poly))
variable_map = Tuple{K,V}[(k, v) for (k, v) in d if v in var_set]
sort!(variable_map, by = x -> x[2], rev = true)
variables = [x[1] for x in variable_map]
P = MP.polynomial_type(V, T)
Expand Down
1 change: 1 addition & 0 deletions test/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ MultivariateMoments = "f4abf1af-0426-5881-a0da-e2f168889b5e"
MultivariatePolynomials = "102ac46a-7ee4-5c85-9060-abc95bfdeaa3"
MutableArithmetics = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
PolyJuMP = "ddf597a6-d67e-5340-b84c-e37d84115374"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
SemialgebraicSets = "8e049039-38e8-557d-ae3a-bc521ccf6204"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
TypedPolynomials = "afbbf031-7a57-5f58-a1b9-b774a0fad08d"
4 changes: 2 additions & 2 deletions test/qcqp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -149,8 +149,8 @@ function test_no_monomials(x, y, T)
model = PolyJuMP.JuMP.GenericModel{T}() do
return PolyJuMP.QCQP.Optimizer{T}(MOI.Utilities.MockOptimizer(inner))
end
PolyJuMP.@variable(model, 0 <= x[1:2] <= 1)
PolyJuMP.@constraint(model, x[1] * x[2] == T(1))
PolyJuMP.@variable(model, 0 <= x[1:2] <= 2)
PolyJuMP.@constraint(model, x[1] * x[2] == 1)
PolyJuMP.@objective(model, Min, sum(x))
PolyJuMP.optimize!(model)
@test MOI.get(inner, MOI.NumberOfVariables()) == 2
Expand Down
164 changes: 164 additions & 0 deletions test/qcqp_extra.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
module TestQCQPExtra

using Test

import MathOptInterface as MOI
import MultivariatePolynomials as MP
import PolyJuMP
import Random

MOI.Utilities.@model(
Model,
(),
(MOI.LessThan, MOI.GreaterThan, MOI.EqualTo, MOI.Interval),
(),
(),
(),
(MOI.ScalarAffineFunction, MOI.ScalarQuadraticFunction),
(),
(),
)

function MOI.supports(
::Model,
::MOI.ObjectiveFunction{MOI.ScalarNonlinearFunction},
)
return false
end

function run_tests_e2e()
for name in names(@__MODULE__; all = true)
if startswith("$name", "test_e2e")
@testset "$(name) $T" for T in [Int, Float64]
getfield(@__MODULE__, name)(T)
end
end
end
return
end

function run_test_scalar_polynomial_function(xs, samples)
@testset "qcqp extra $T" for T in [Float64, BigFloat]
for i in 1:samples
test_scalar_polynomial_function(xs, T)
end
end
return
end

function run_tests_subs(xs, ys, samples, TS)
Random.seed!(2024)
for name in names(@__MODULE__; all = true)
if startswith("$name", "test_subs")
@testset "$(name) $T" for T in TS
for i in 1:samples
getfield(@__MODULE__, name)(xs, ys, T)
end
end
end
end
return
end

function test_unconstrained_before_projection(T)
inner = Model{T}()
optimizer = MOI.Utilities.MockOptimizer(inner)
model = PolyJuMP.JuMP.GenericModel{T}(
() -> PolyJuMP.QCQP.Optimizer{T}(optimizer),
)
PolyJuMP.@variable(model, -1 <= a[1:2] <= 1)
PolyJuMP.@objective(model, Min, a[1]^2 * a[2]^2)
PolyJuMP.optimize!(model)
vis = MOI.get(inner, MOI.ListOfVariableIndices())
@test length(vis) == 4
F = MOI.ScalarQuadraticFunction{T}
S = MOI.EqualTo{T}
cis = MOI.get(inner, MOI.ListOfConstraintIndices{F,S}())
@test length(cis) == 2
return
end

function test_unconstrained_after_projection(T)
inner = Model{T}()
optimizer = MOI.Utilities.MockOptimizer(inner)
model = PolyJuMP.JuMP.GenericModel{T}(
() -> PolyJuMP.QCQP.Optimizer{T}(optimizer),
)
PolyJuMP.@variable(model, -1 <= a <= 1)
PolyJuMP.@objective(model, Min, a^2)
PolyJuMP.optimize!(model)
vis = MOI.get(inner, MOI.ListOfVariableIndices())
@test length(vis) == 1
F = MOI.ScalarQuadraticFunction{T}
S = MOI.EqualTo{T}
cis = MOI.get(inner, MOI.ListOfConstraintIndices{F,S}())
@test length(cis) == 0
return
end

function _random_polynomial(vars, T)
ms = Random.shuffle(MP.monomials(vars, 1:length(vars)))
return sum(ms[i] * T(randn()) for i in eachindex(ms) if rand(Bool))
end

function test_subs!_preserves_moi_sync(xs, ys, T)
p = _random_polynomial(xs, T)
mois = MOI.VariableIndex.(eachindex(xs))
vals = T.(randn(length(mois)))
mask = rand(Bool, length(xs))
is = Random.shuffle(eachindex(xs)[mask])
index = Dict{eltype(mois),eltype(xs)}(zip(mois[is], ys[is]))
moi_map = Dict(zip(xs, mois))
moivars = [moi_map[v] for v in MP.variables(p)]
before = PolyJuMP.ScalarPolynomialFunction(p, moivars)
after, _ = PolyJuMP.QCQP._subs!(before, index)
bmap = [vals[v.value] for v in before.variables]
amap = [vals[v.value] for v in after.variables]
bvalue = before.polynomial(MP.variables(before.polynomial) => bmap)
avalue = after.polynomial(MP.variables(after.polynomial) => amap)
# avoid verbose fails
@test isapprox(Float64(bvalue), Float64(avalue))
return
end

function test_scalar_polynomial_function(xs, T)
pick = rand(eachindex(xs))
ids = Random.shuffle(eachindex(xs))
poly = sum(T(randn()) * xs[i] for i in ids if i != pick)
mois = MOI.VariableIndex.(eachindex(xs))
moi_to_vars = Dict(zip(mois, xs))
spf = PolyJuMP._scalar_polynomial(moi_to_vars, Any, poly)
expected = MP.variables(poly)
actual = [moi_to_vars[m] for m in spf.variables]
@test length(MP.variables(spf.polynomial)) == length(spf.variables)
@test expected == actual
return
end

end # module

using Test

@testset "TestQCQPFinalTouch" begin
TestQCQPExtra.run_tests_e2e()
end

import DynamicPolynomials
@testset "DynamicPolynomials" begin
ids = 1:4
DynamicPolynomials.@polyvar(x[ids])
DynamicPolynomials.@polyvar(y[ids])
samples = 10
types = [Float64, BigFloat] # Rational fails with DynamicPolynomials
TestQCQPExtra.run_tests_subs(x, y, samples, types)
TestQCQPExtra.run_test_scalar_polynomial_function(x, samples)
end

import TypedPolynomials
@testset "TypedPolynomials" begin
TypedPolynomials.@polyvar(z[1:4])
TypedPolynomials.@polyvar(w[1:4])
types = [Float64, BigFloat, Rational{BigInt}]
samples = 10
TestQCQPExtra.run_tests_subs(z, w, samples, types)
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,3 +8,4 @@ include("Mock/mock_tests.jl")
include("kkt.jl")
include("sage.jl")
include("qcqp.jl")
include("qcqp_extra.jl")
Loading