forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Exec] Add a script to test GPU memory bandwidth (apache#15287)
This PR adds a script to test GPU memory bandwidth in TVM. Example usage: python -m tvm.exec.gpu_memory_bandwidth \ "nvidia/geforce-rtx-3090-ti" \ --dtype "float32" \ --bx "8,16,32,64,128,256" \ --tx "32,64,128,256,512,1024" \ --vec "1,2,4"
- Loading branch information
Showing
1 changed file
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
"""A script to measure GPU memory bandwidth""" | ||
import argparse | ||
import itertools | ||
|
||
import numpy as np | ||
|
||
import tvm | ||
from tvm import te, tir | ||
from tvm.meta_schedule.runner import EvaluatorConfig | ||
from tvm.testing import local_run | ||
|
||
|
||
def _parse_args() -> argparse.Namespace: | ||
def _parse_list_int(source: str): | ||
return [int(i) for i in source.split(",")] | ||
|
||
parser = argparse.ArgumentParser( | ||
prog="GPU memory bandwidth testing", | ||
description="""Example: | ||
python -m tvm.exec.gpu_memory_bandwidth "nvidia/geforce-rtx-3090-ti" \ | ||
--dtype "float32" | ||
--bx "8,16,32,64,128,256" \ | ||
--tx "32,64,128,256,512,1024" \ | ||
--vec "1,2,4" | ||
""", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter, | ||
) | ||
parser.add_argument( | ||
"target", | ||
type=str, | ||
help="The target to be benchmarked", | ||
) | ||
parser.add_argument( | ||
"--xo", | ||
type=int, | ||
default=1024, | ||
help="The value of `XO` in [XO, K, XI] => [XO, XI] reduction", | ||
) | ||
parser.add_argument( | ||
"--k", | ||
type=int, | ||
default=64, | ||
help="The value of `K` in [XO, K, XI] => [XO, XI] reduction", | ||
) | ||
parser.add_argument( | ||
"--xi", | ||
type=int, | ||
default=4096, | ||
help="The value of `XI` in [XO, K, XI] -> [XO, XI] reduction", | ||
) | ||
parser.add_argument( | ||
"--dtype", | ||
type=str, | ||
default="float32", | ||
help="The data type to be used in the workload", | ||
) | ||
parser.add_argument( | ||
"--bx", | ||
type=_parse_list_int, | ||
default=[8, 16, 32, 64, 128, 256], | ||
help="The value to be used to split `XO` into [BX, _]", | ||
) | ||
parser.add_argument( | ||
"--tx", | ||
type=_parse_list_int, | ||
default=[32, 64, 128, 256, 512, 1024], | ||
help="Number of threads to be used", | ||
) | ||
parser.add_argument( | ||
"--vec", | ||
type=_parse_list_int, | ||
default=[1, 2, 4], | ||
help="Vector length to be used in vectorized load", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
def _workload( | ||
len_xo: int, | ||
len_k: int, | ||
len_xi: int, | ||
dtype: str, | ||
): | ||
# pylint: disable=invalid-name | ||
A = te.placeholder((len_xo, len_k, len_xi), dtype=dtype, name="A") | ||
k = te.reduce_axis((0, len_k), "k") | ||
B = te.compute( | ||
(len_xo, len_xi), | ||
lambda i, j: te.sum(A[i, k, j], axis=k), | ||
name="B", | ||
) | ||
# pylint: enable=invalid-name | ||
return te.create_prim_func([A, B]) | ||
|
||
|
||
def _schedule( | ||
sch: tir.Schedule, | ||
len_bx: int, | ||
len_tx: int, | ||
len_vec: int, | ||
): | ||
# pylint: disable=invalid-name | ||
block = sch.get_block("B") | ||
xo, xi, k = sch.get_loops(block) | ||
bx, xo = sch.split(xo, factors=[len_bx, None]) | ||
xi, tx, vec = sch.split(xi, factors=[None, len_tx, len_vec]) | ||
sch.reorder(bx, xi, tx, xo, k, vec) | ||
bx = sch.fuse(bx, xi) | ||
sch.bind(bx, "blockIdx.x") | ||
sch.bind(tx, "threadIdx.x") | ||
ldg = sch.cache_read(block, 0, "local") | ||
sch.compute_at(ldg, k, preserve_unit_loops=True) | ||
sch.vectorize(sch.get_loops(ldg)[-1]) | ||
sch.decompose_reduction(block, k) | ||
# pylint: enable=invalid-name | ||
|
||
|
||
def main(): # pylint: disable=too-many-locals | ||
"""Entry point""" | ||
args = _parse_args() | ||
# pylint: disable=invalid-name | ||
target = tvm.target.Target(args.target) | ||
dtype = args.dtype | ||
|
||
a = np.random.uniform(-1, 1, (args.xo, args.k, args.xi)).astype(dtype) | ||
b = np.zeros((args.xo, args.xi), dtype=dtype) | ||
num_bytes = a.size * a.itemsize + b.size * b.itemsize | ||
print("###### Bandwidth Test ######") | ||
print( | ||
f"Workload [XO, K, XI] => [XO, XI]. " | ||
f"[{args.xo}, {args.k}, {args.xi}] => [{args.xo}, {args.xi}]" | ||
) | ||
print(f"Input size: {num_bytes / 1048576} MB") | ||
print(f"Target: {target}") | ||
|
||
# pylint: enable=invalid-name | ||
best_bandwidth = -1 | ||
for len_bx, len_tx, len_vec in itertools.product( | ||
args.bx, | ||
args.tx, | ||
args.vec, | ||
): | ||
func = _workload( | ||
len_xo=args.xo, | ||
len_k=args.k, | ||
len_xi=args.xi, | ||
dtype=dtype, | ||
) | ||
sch = tir.Schedule(func) | ||
_schedule(sch, len_bx, len_tx, len_vec) | ||
|
||
_, profile_result = local_run( | ||
tvm.build(sch.mod, target=target), | ||
target.kind.name, | ||
[a, b], | ||
evaluator_config=EvaluatorConfig( | ||
number=10, | ||
repeat=1, | ||
min_repeat_ms=100, | ||
enable_cpu_cache_flush=False, | ||
), | ||
) | ||
bandwidth = num_bytes / profile_result.mean / (1024**3) | ||
bx = len_bx * args.xi // (len_tx * len_vec) # pylint: disable=invalid-name | ||
mbs = num_bytes / 1024 / 1024 | ||
print( | ||
f"bandwidth = {bandwidth:.3f} GB/s, bx = {bx}, tx = {len_tx}, " | ||
f"len_vec = {len_vec}, bytes = {mbs} MB" | ||
) | ||
if bandwidth > best_bandwidth: | ||
best_bandwidth = bandwidth | ||
print(f"peak bandwidth: {best_bandwidth:.3f} GB/s") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |